

Environmental Product Declaration

In accordance with EN 15804 and ISO 14025 for:

Hasopor foam glass 10-60 mm (Cellular glass aggregate)

Hasopor AB

Programme:	The International EPD [®] System <u>www.environdec.com</u>
Programme operator:	EPD International AB
EPD registration number:	S-P-01088
Issue date:	2017-12-14
Validity date:	2022-12-13
Geographical scope:	Sweden

Company

Hasopor AB

Strandvägen 2 SE-69674 HAMMAR,

www.hasopor.se

stefan.nordahl@hasopor.se

+46583770011

This EPD is a cradle-to-gate analysis, covering stages A1, A2 and A3 according to the EN15804 standard.

Product and Production description

Hasopor foam glass is a lightweight cellular glass aggregate, 10-60 mm, mainly made from recycled glass containers, collected from households in Sweden. After going through the nearby glass sorting facility, the glass is dried and milled to a very fine glass powder. The powder is mixed with an activator and the powder is heated in a kiln at approximately 1000 degrees Celcius and expands 4-5 times. The output from the kiln sets and breaks by cooling, into a granular material of 10-60 mm with a dry bulk density of approximately 180 kg/m3.

Application:

Hasopor foam glass is mainly used as a lightweight filling material, by customers who wish to get environmental and sustainable benefits. The most common use cases are groundwork for road, house and geotechnical construction areas.

Service life:

Limited by the service life of the construction, where the product is used. Product does not degrade over time. It is possible to extract the product after construction service life time and reuse it in another construction, similar to stone aggregate, which would extend the life time even further.

Content declaration:

Materials	Share of product, [%]	Amount, recycled material [%]	Additional information
Glass, waste fraction from recycling	> 97 %	100 %	Non hazardous
Silicon carbide, secondary flow from Silicon industry	< 3 %	-	Non hazardous

Materials on the "Candidate List of substances of very high concern for Authorisation": None

All recycled material is collected post-consumer.

LCA model

General info:

DECLARED UNIT	1m3 of Hasopor cellular glass aggregate ready for bulk transport to customer
SYSTEM BOUNDARIES	Cradle to gate: Mandatory stages A1 – A3
REFERENCE SERVICE LIFE (RSL)	N/A
CUT-OFF RULES	Life Cycle Inventory data for a minimum of 99% of total inflows to the upstream and core module has been included. Processes that don't lead to a measurable physical or energy in- or outflow, such as company travel or services supplied by external partners, have not been included.
ALLOCATIONS	Economic allocation has been used in calculation of impact from silicon carbide production, due to use of low value, secondary production/waste flow (powder form). Effects of primary production of recycled materials, including waste handling, allocated to the main product in which the material was used, in accordance with EN 15804. The recycling process and transportation of the material is allocated to this analysis.
GEOGRAPHICAL COVERAGE AND TIME PERIOD	Sweden, primary data from 2016

According to EN 15804, EPD's of construction products may not be comparable if they do not comply with this standard. According to ISO 21930, EPD's might not be comparable if they are from different programmes. The scenarios included are currently in use and are representative for one of the most likely scenario alternatives All primary product data was provided by Hasopor AB. All secondary data was retrieved using the GaBi ts software, version 7.3, with

Ecoinvent 3.2 (2017) and GaBi Professional (2017) databases.

Data quality:

Raw material	Data quality	Data Source and description	Age of data
Glass	-	Waste fraction from glass recycling. Impacts from glass collection and sorting are allocated to production of the original glass product.	-
Silicon carbide	Data base	Ecolnvent 3.3. Altered for Norwegian production conditions	2015
Energy in HASOPOR producti	on		
Use	Specific	HASOPOR	2016
Extraction and distribution, electricity	Generic data	GaBi Professional 2017. Electricity 100% hydro power	2013
Extraction and distribution, fossil fuels	Generic data	GaBi Professional 2017.	2013
Transport	•	•	
Distances	Specific	HASOPOR	2016
Extraction, infrastructure and combustion	Generic data	GaBi Professional 2017	2013 - 2016

The electricity used in the production is supplied by Mälarenergi and is 100% hydro power.

No specific assumptions have been made.

EN15804 break-down of life-cycle stages

Produ	ct stage		Const proces stage	ruction ss	Uses	stage						End o	f life st	age	-	Resource recovery stage
Raw materials	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	х	х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

X = Included, MND = Module Not Declared.

Description of the stages: A1-A3

A1, raw material extraction and processing, processing of secondary material input (e.g. recycling processes). This includes the extraction and processing of all raw materials and energy which occur upstream from the manufacturing process.

There are two basic raw materials: recycled bottle glass and fine grain silicon carbide. The glass originates mainly from a glass recycling site co-located with the Hasopor production, at Hammar Sweden. A smaller part of the glass raw material originates from glass recycling sites in England and Poland. The silicon carbide originates from a producer of high quality silicon carbide in Norway, and the fine grain quality that is used for Hasopor is a bi-product of their silicon carbide production process.

A2, transport to the manufacturer. The raw materials are transported to the manufacturing site. The modelling includes road, boat and/or train transportations of each raw material. However most comes

via conveyors or wheel loaders very close to the production and therefore their impact are included in A3.

The glass raw material from the co-located recycling plant in Hammar is transported using Hasopors own wheel loaders, and conveyor belts. The glass raw material from England and Poland is transported using trucks, and ferries. The silicon carbide raw material is transported using trucks. All truck and ferry transports are made in bulk.

A3, manufacturing, including provision of all materials, products and energy, as well as waste processing up to the end-of waste state or disposal of final residues during the product stage. This module includes the manufacture of products and the manufacture of packaging. The production of packaging material is taken into account at this stage. The processing of any waste arising from this stage is also included.

See the flow diagram for a detailed description of the production process.

Environmental performance

Results per declared unit (1 m3 of HASOPOR cellular glass aggregate at factory gate, ready for bulk transport to customer).

Use of resources

	UNIT	A1	A2	A3	A1+A2+A3
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ, net calorific value	22,8	0,444	518	541
Use of renewable primary energy resources used as raw materials	MJ, net calorific value	-	-	-	-
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	MJ, net calorific value	22,8	0,444	518	541
Use of non- renewable primary energy excluding non- renewable primary energy resources used as raw materials	MJ, net calorific value	8,44	11,3	61,6	81,3
Use of non- renewable primary energy resources used as raw materials	MJ, net calorific value	-	-	-	-
Total use of non- renewable primary energy resources (primary energy and primary energy resources used as raw materials)	MJ, net calorific value	8,44	11,3	61,6	81,3
Use of secondary material	kg	0	0	153	153
Use of renewable secondary fuels	MJ, net calorific value	-	-	-	-
Use of non-renewable secondary fuels	MJ, net calorific value	-	-	-	-
Use of net fresh water	m3	0,0383	0,00994	1,35*	1,4

* >95% of water use is from evaporation at hydropower plant where the electricity is generated.

Potential environmental impact

	UNIT	A1	A2	A3	A1+A2+A3
Global warming potential (GWP ₁₀₀)	kg CO₂-eq	1,46	0,844	5,47	7,77
Ozone depletion potential	kg CFC11-eq	7,23E-08	2,67E-13	1,58E-12	7,23E-08
Acidification potential	kg SO₂-eq	0,00700	0,00775	0,00576	0,0205
Eutrophication potential	kg PO₄³-eq	0,000462	0,000988	0,00121	0,00266

Photochemical oxidant creation potential	kg C ₂ H ₄ -eq	0,000477	-0,000108	0,000464	0,000833
Depletion of abiotic resources (elements)	kg Sb-eq	1,44E-06	5,68E-08	0,0000155	0,0000170
Depletion of abiotic resources (fossil)	MJ net calorific value	7,28	11,3	61,3	79,9

Impact methods used: CML 2001 - Jan. 2016.

Waste production

	UNIT	A1	A2	A3	A1+A2+A3
Non-hazardous waste	kg	0,00975	0,000680	0,948	0,958
Hazardous waste	kg	9,47E-09	4,57E-07	5,58E-07*	1,02E-06
Radioactive waste	kg	0,000456	0,0000151	0,000120*	0,000591

* 100% of Hazardous and Radioactive waste originates from production of energy and fuels used.

Other environmental information

- Product does not degrade with time. It is possible to extract the product after construction service life time and reuse it directly in another construction. Depending on the demands of the second construction there might be need to wash the product before reuse, similar to stone aggregate.
- For further information about certificates and product features see our website <u>www.hasopor.se</u>

Programme-related information and verification

Programme:	The International EPD [®] System EPD International AB Box 210 60 SE-100 31 Stockholm Sweden
Product Category Rules:	www.environdec.com PCR 2012:01 Construction Products and Construction Services. Version 2.2
Product group classification:	UN CPC 371
Reference year for data:	2016
Geographical scope:	Sweden

Product category rules (PCR): CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES, 2012:01, version 2.2

PCR review was conducted by:

The Technical Committee of the International EPD® System. Chair: Massimo Marino. Contact via info@environdec.com

Independent verification of the declaration and data, according to ISO 14025:2006:

□ EPD Process Certification (internal)

[x] EPD Verification (external)

Third party verifier:' Carl-Otto Nevén

Accredited by: Approved by the International EPD System

Mandatory statements

- This is a cradle-to-gate (A1-A3) EPD according to the EN 15804 PCR,
- EPD of construction products may not be comparable if they do not comply with EN 15804.

"EPDs within the same product category but from different programmes may not be comparable"

Contact information:

	HASOPOR				
EPD owner:	Hasopor AB Strandvägen 2, SE-60674 HAMMAR				
	Strahuvagen 2, SE-09074 HAMMINAK,				
	www.nasopol.se				
	<u>+46583770011</u>				
	Øivl				
	IVL Swedish Environmental Research Institute,				
LCA author:	Box 210 60,				
	SE-100 31 Stockholm, Sweden.				
	Web: <u>www.ivl.se</u> .				
	Contact person: Karin Sanne (<u>karin.sanne@ivl.se</u>)				
	+46-10-7886500				
Programme operator:	EPD International AB				
	Box 210 60, SE-100 31 Stockholm				
	www.environdec.com				
	info@environdec.com				

References

General Programme Instructions of the International EPD® System. Version 2.01.

PCR 2012:0. CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES. Version 2.2

LCA-report Hasopor foam glass 10-60 mm (Cellular glass aggregate). Jonatan Wranne, IVL Swedish Environmental Research Institute

Certificate hydro power. Mälarenergi, provided by Axel Ekström, Miljöbyrån, on assignment by Hasopor AB

Information about value and production of small grain silicon carbide *Personal communication, silicon carbide producer, Norway, through Axel Ekström, Miljöbyrån, on assignment by Hasopor AB*

Information about inputs and outputs of Hasopor AB. Personal communication. Axel Ekström, Miljöbyrån, on assignment by Hasopor AB, and Roger Borén, Hasopor AB

Modelling software: GaBi ts, version 7.3

Databases: EcoInvent 3.3 and GaBi Professional 2017