Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for

Product family

Elitfönster Harmoni

Model

Inward opening 3-glass window Kipp/Dreh

Product name

ETIL-AL kd

From Elitfönster AB

Publication date 2022-08-22 Revision date: 2023-03-20 (Version 2) Valid for 5 years until 2027-08-21

Programme

The International EPD® System, www.environdec.com

Programme operator EPD International AB

EPD registration number S-P-06411

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

Environmental Product Declaration

Environmental Product Declarations (EPD) present transparent, verified and comparable information about the life-cycle environmental impact of products.

The International EPD® System is a global program for environmental declarations based on ISO 14025 and EN 15804. The EPD online database currently contains more than 1100 EPDs for a wide range of product categories by organisations in 45 countries.

Differences versus previous version.

2022-08-22 Version 1

2023-03-20 Version 2

Editorial change: Table 2 has been updated from declaring content in FU to declaring content in the product in size 1230x1480 mm as well as packaging and proportion of renewable material.

Company information

Owner of the EPD

Elitfönster AB Honnörsgatan 2 352 36 Växjö

Description of the organisation

Elitfönster AB is with its wide range of windows, Sweden's leading window manufacturers with traditions from Småland since 1924. The company has about 1,000 employees and is represented throughout Sweden.

Since 2004 Elitfönster AB has been a part of Inwido. As Europe's leading window group, Inwido's business concept is to develop and sell the market's best customized window and door solutions through a decentralized structure and with a focus on the consumer-driven market, in order to create long-term sustainable growth, organically and through acquisitions. Inwido consists of 28 business units with approximately 4,300 employees in eleven countries.

Contact/Certification and test manager

Mats Brånäs Tel 010-451 42 19 Mobile 070-388 41 89 E-mail mats.branas@elitfonster.se

Product-related or management system-related certifications

ISO 9001:2015, ISO 14001:2015 Sunda Hus, Byggvarubedömningen, Basta

Average or specific EPD: Average

This EPD is averaged for the production of ETIL-AL kd in regard to standard and energy variations. The energy variation has up to 6% higher environmental impacts (The most differing impact category being ADPE). Climate change has about 1% higher impacts for the energy type windows. Since this difference is within +/-10%, both the standard and energy type is covered in this EPD.

Product information

Inward opening 3-glass window kipp/dreh – ETIL-AL kd

An inward opening wooden window with external aluminum cladding and a 3-glazing insulating glass that can be opened both as a side-hung window and inward for ventilation.

The casement consists of wood with outer aluminum cladding and a insulating glass consisting of three glass planes. The casement is attached to the frame via a fitting system that enables opening in the same way as a side-hung window and creates the opportunity for ventilation by angling the casement inwards.

According to the Construction Products Regulation CPR (EU) no. 305/2011, the essential properties of the product must be declared in the CE marking and the Declaration of Performance. The technical properties of the window are declared in the Declaration of Performance, DoP no. 40-29-CE3026201 which can be accessed on Elitfönster's website.

Construction product declaration eBVD nr C-SE556007307301-32.

A picture Inward opening 3-glass window kipp/dreh – ETIL-AL kd can be seen to the right.

Energy glass consists of a float glass that is coated with a thin film of metal oxide that lets through short-wave solar energy and reflects long-wave room heat. The coating is almost completely transparent, but there is some difference in light input between coated glass and uncoated glass. Coated glass is used to achieve better insulating ability in a glass, by combining different numbers of coated glass in a window or insulating glass, you can achieve different levels of insulating ability for a window.

The greater the number of energy glasses a window has, the better the insulation capacity, but also the darker the glass.

Gas

An insulating glass consists of glass that are separated from each other by spacers, these spacers can be filled with gas such as argon to give the insulating glass a better insulating ability. Argon does not affect sunlight radiation but improves the insulating ability of the insulating glass. An insulating glass with two glasses consists of an argon gas-filled spacer, an insulating glass with three glasses has two spacers, here you can choose to fill one or both spacers with argon gas. If you fill both distances with gas, you achieve a better insulation capacity than if only one distance is gas-filled.

By combining different sets of energy-coated glass and argon-filled glass spacers, you can get different glass properties for insulation and light input. If you also combine these components with different types of glass spacing and dimensions of constituent components as well as different choices of type of glass, you have an almost infinite number of different combinations. In this report, the environmental impact is reported based on two different glass combinations, these are called "standard" and "energy".

Standard

The insulating glass consists of three glasses separated by two glass spacers made of plastic (hot edge). The inner glass is energy coated and the inner glass spacer is filled with argon.

Energy

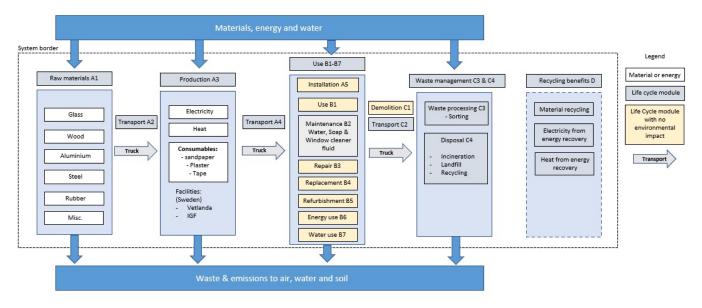
The same insulating glass construction as standard, except that both the inner and outer glass are energy-coated and that both glass spacers are filled with argon.

LCA information	
Functional Unit	The functional unit used in this report is 1 m ² . The weight of finished ETIL-AL kd is 39,58 kg per m ² .
	Standard size for ETIL-AL kd is 1230 x 1480 mm.
Reference Service Life (RSL)	The RSL is set to 50 years. The RSL is based on the fact that windows with alumnum-clac windows have a longer service life than similar windows made of PVC or wood.
Product group classification	UN CPC 42120
Goal and Scope	The result will be used to understand where the environmental burden for the product occurs during the life cycle and aim to lay a road map for development to reduce this burden. The result will be communicated by the International EPD system.
Manufacturing Site	Brogårdsgatan 1, 574 38, Vetlanda, Sverige
Geographical Area	Europe
Compliant with	This EPD follows the "Book-keeping" LCA approach which is defined as an attributional LCA in the ISO 14040 standard.
	 The EPD is compliant with: ISO 14025 EN 15804:2012+A2:2019 Product Category Rules 2019:14. Construction products and construction services. Version 1.2.5 Sub-PCR-007 Windows and doors (EN 17213)
Cut-Off Rules	The procedure below is followed for the exclusion of inputs and outputs according to the EN 15804:2012+ A2:2019 standard:
	 In the case of insufficient input data or data gaps for a unit process, the cut-off crite- rion is 1 % of renewable and non-renewable primary energy usage and 1 % of the total mass input to that unit process.
	 The maximum neglected input flows per declared module (A1- A3) is 5 % of energy usage and mass.
	No cut-offs have been made concerning specific data in this study.
Background Data	The data quality of the background data is considered good. All site-specific data is col- lected from the year 2019. ecoinvent is the world's biggest LCI data library and the latest and most updated version was used. ecoinvent's data library contain data for the specific geographical regions relevant for this study.
	The assessment considers all available data from the production process, including all raw materials and auxiliary materials used as well as the energy consumption in relation to av- ailable ecoinvent 3.6 datasets for the manufacture of windows.
	The background data from ecoinvent 3.7 are from 2016-2020
	For some materials previously published EPDs have been utilized. The specific materials and EPDs are presented later in this report.
Electricity data	Electricity consumption in the A3 module comes from 100% wind power certified by Guarantee of Origin, Electricity is represented by data in ecoinvent 3.7 regionalized for Sweden.

>> LCA information	
Assumptions	In A4 the transport distance is assumed to be 320km, based on average distances 2020.
	When installing and uninstalling the window no environmental aspects in addition to using of electrical machines is assumed according to installation instructions from Elitfönster. The window is assumed to require 60 ml/m ² of cleaning solution and 10 ml/m ² of lubrication oil per year.
	The used window is assumed to be transported 50km to the closest waste management facility. There it is disassembled, and the following waste treatment activities performed:
	 Aluminum and steel are recycled at 90% collection rate Glass is landfilled at 100% landfilling rate Wood, paint, plastic, rubber and misc. is assumed to be incinerated with energy recovery at a municipal incineration plant at 90% incineration rate.
	Waste not recycled or incinerated is assumed to go to landfill.
Allocations	Polluter Pays / Allocation by Classification
	 Two allocation rules are applied: 1) the raw material necessary for the manufacture is allocated by mass of the declared unit. 2) the energy necessary for manufacturing is weighed depending on the complexity of the product and then allocated by dividing the total energy requirement in MJ by production volume of the declared unit.
Impact Assessment methods	Potential environmental impacts are calculated with Environmental Footprint 3.0 method as implemented in SimaPro 9.2.
	Resource use values are calculated from Cumulative Energy Demand V1.11.
Based on LCA Report	Miljögiraff report 973 LCA Elitfönster
LCA Practitioner	Viktor Hakkarainen, Miljögiraff AB
Software	SimaPro 9.2.0.1

The product documented within this EPD contains no substances in the REACH Candidate list. Furthermore, the product does not contain any substances from the Norwegian priority list.

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.


System Boundary

This is a Cradle to Grave with modules A+B+C+D (see Table 1 for included modules). The system boundary mean that all processes needed for raw material extraction, transport, manufacturing and disposal are included in the study. For an overview of the included processes see Figure 2.

	Prod stage		Const proce			Use	stage						End	of life	stag	e	Reso reco	ource very stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demo- lition	Transport	Waste processing	Disposal		Reuse-Recovery- Recycling-potential
Module	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D	
Modules declared	х	х	х	x	x	x	x	x	x	x	x	x	х	х	x	x	х	
Geography	Euro	Euro	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE/	SE	SE	SE	SE	
Average data varia- bility	-	<10%	<10%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Specific data	>90%	0				-	-	-	-	-	-	-	-	-	-	-	-	

Table 1, show an overview of the included and accounted life cycle phases.

Figure 2, shows what is included in the different modules.

Content and life cycle information

The product consists of 15 raw materials.

The weight per product and part recycled material can be seen in Table 2.

Table 2, Product content for ETIL-AL kd size 1230 mm x 1480 mm show the weight and share recycled (post-consumer) material for the raw material and packaging

Products components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Glass	40,108	9,3%	0%
Argon	0,069	0%	0%
Distance list	0,462	0%	0%
Edge sealing compond	1,038	0%	0%
Butyl	0,093	0%	0%
Desiccant	0,395	0%	0%
Pinewood	16,877	0%	100%
Wood board	0,000	0%	0%
Surface treatment for pine	1,153	0%	0%
Aluminum	7,080	0%	0%
Powder coating aluminum	0,258	0%	0%
Metal handle & Miscellaneous steel parts	2,959	45%	0%
Plastic	0,507	0%	0%
Rubber EPDM	0,948	0%	0%
Silikonlist	0,000	0%	0%
Rubber TPE	0,000	0%	0%
Glue	0,039	0%	0%
Sealant	0,071	0%	0%
Waterproof agent	0,000	0%	0%

Packaging	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Plastic film (stretch film)	0,050	0%	0%
Plywood	0,358	0%	100%
Screw	0,016	0%	0%
Edge protection (cardboard)	0,190	0%	100%
Cardboard angle	0,057	0%	100%
Top cover (plastic film)	0,060	0%	0%
Pallet (wooden)	2,600	0%	100%

The product documented within this EPD contains no substances in the REACH Candidate list or from the candidate list of SVHC for Authorisation.

>> Content and life cycle information

The wood raw material used is pine supplied by FSC-labeled and / or PEFC-labeled suppliers that glues and finger joins the wood raw material. The wood is cut and planed and processed in Elitfönster premises in Vetlanda, the finished wood details are surface treated with a water-based paint system. Elitefönster's own glass factory, IGF in Lenhovda, uses flat glass from Europe's largest glass manufacturer. IGF cuts the glass and manufactures the insulating glass. The glass is installed in the product in Elitfönster's manufacturing unit in Vetlanda. Aluminum profiles are delivered by Profilgruppen in Åseda, they are processed and powder coated on A-paint in Sävsjö, then transported to Elitfönster's manufacturing unit in Vetlanda for final assembly. The finished windows are packed on a wooden pallet with plywood slats and cardboard corners and plasticized with shrink plastic. The windows are transported on pallets by truck to the customer.

To produce 1 m² product, 16,5 kWh of electricity is used for Inward opening 3-glass window kipp/dreh. 17,29 kWh of heat is used for Inward opening 3-glass window kipp/dreh. Electricity is certified wind power electricity.

57% of the heat comes from own combustion from waste in production, the rest comes from the district heating network in Vetlanda. District heating in Vetlanda comes to 98.7% from renewable sources.

In total, around 26 % of waste is generated in production for ETIL-AL kd. A large part of the waste is wood.

During usage, no indoor emissions arise. The paint used is water based and all the other raw materials do not emit any emissions.

Due to the enhanced durability of an aluminum clad window's physical properties, no change of IGU is required during the windows 50-year lifespan (Carlsson, 2009).

>> Content and life cycle information

This EPD uses input data from other EPDs, the used EPDs can be viewed below:

Material	EPD name	EPD specifications
Uncoated glass by Pilkington	Flat glass, toughened safety glass and laminated safety glass	Sector-EPD for flat plane glas Manufacturer: Pilkington AB EPD Owner: Bundesverband Flachglas e.V. EPD Author: ift Rosenheim GmbH EPD Platform: ift Rosenheim GmbH Geography: Germany Publication number: M-EPD-FEV-GB-002000 Publication date: 2017-12-18
Uncoated glass by Guardian	Uncoated flat glass, laminated safety glass and coated flat glass	Manufacturer: Guardian Europé S.a.r.l. EPD Owner: Guardian Europé S.a.r.l. EPD Author: ift Rosenheim GmbH EPD Platform: ift Rosenheim GmbH Geography: Germany Publication number: EPD-GFEV-GB-19.2 Publication date: 2021-06-29
Distance list	TGI-Spacer M	Manufacturer: Technoform EPD Owner: Technoform EPD Author: Technoform EPD platform: INIES Geography: France Publication number: 7-333:2019 Publication date: 2019-06-15
Pine by Stora Enso	Industrial Components	Manufacturer: Stora Enso EPD Owner: Stora Enso EPD Author: Stora Enso EPD platform: The International EPD® System Geography: Sweden, Finland, Estonia, Lithuania Publication number: S-P-02154 Publication date: 2020-08-03
Surface treatment pine	Water-borne exterior paints	Manufacturer: Teknos EPD Owner: Teknos EPD Author: Bionova Engineering EPD platform: Rakennustieto Geography: Finland Publication number: RTS EPD, RTS_13_18 Publication date: 2018-04-10
Aluminum	Hydro 4.0 Aluminium Extrusion Ingot	Manufacturer: Hydro Aluminium AS EPD Owner: Hydro Aluminium AS EPD Author: Østfoldforskning EPD Platform: EPD-Norge Geography: Norway Publication number: NEPD-1840-468-EN Publication date: 2019-08-05

Table 3 Overview of utilized EPDs as input data.

Environmental Information Inward opening 3-glass window kipp/dreh – ETIL-AL kd

Potential environmental impact – mandatory indicators according to EN 15804 – Inward opening 3-glass window kipp/dreh – ETIL-AL kd

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4
Climate change - Fossil	kg CO ₂ eq	61,37	6,72	2,87	70,96	2,10	0,19	0	3,13	0	0
Climate change – Biogenic	kg CO₂ eq	-27,17	0,02	8,20	-18,95	0,01	2,57	0	-0,58	0	0
Climate change – Land use and LU change	kg CO₂ eq	0,18	0,00	0,01	0,18	0,00	0,00	0	0,18	0	0
Climate change	kg CO₂ eq	34,48	6,74	11,08	52,30	2,11	2,75	0	2,74	0	0
Ozone depletion	kg CFC11 eq	3,92E-06	1,53E-06	2,37E-07	5,68E-06	4,78E-07	6,31E-09	0	5,61E-07	0	0
Acidification	mol H+ eq	0,36	0,03	0,02	0,40	0,01	0,00	0	0,02	0	0
Eutrophication, freshwater	kg P eq	1,24E-02	4,52E-04	7,85E-04	1,36E-02	1,41E-04	1,30E-05	0	1,11E-03	0	0
Eutrophication, freshwater	kg PO4 eq	3,81E-02	1,39E-03	2,41E-03	4,19E-02	4,34E-04	3,98E-05	0	3,40E-03	0	0
Eutrophication, marine	kg N eq	8,76E-02	8,24E-03	5,49E-03	1,01E-01	2,58E-03	2,22E-04	0	5,92E-03	0	0
Eutrophication, terrestrial	mol N eq	0,94	0,09	0,06	1,09	0,03	0,00	0	0,04	0	0
Photochemical ozone formation	kg NMVOC eq	1,10E-01	2,75E-02	1,73E-02	1,55E-01	8,60E-03	5,16E-04	0	1,72E-02	0	0
Resource use, mi- nerals and metals	kg Sb eq	4,93E-04	2,42E-05	1,09E-04	6,26E-04	7,58E-06	1,28E-07	0	4,52E-05	0	0
Resource use, fossils	MJ	831	102	28	961,02	32	1	0	60	0	0
Water use	m ³ depriv.	15,98	0,28	0,77	17,03	0,09	-0,01	0	24,46	0	0
Particulate matter	disease inc.	5,82E-06	4,66E-07	1,36E-06	7,6E-06	1,46E-07	4,70E-09	0	1,99E-07	0	0
lonising radiation	kBq U-235 eq	12,34	0,53	0,26	13,1	0,17	0,00	0	0,33	0	0
Ecotoxicity, freshwater	CTUe	1889	78	158	2124	24	1	0	115	0	0
Human toxicity, cancer	CTUh	1,77E-07	2,77E-09	7,48E-09	1,87E-07	8,67E-10	1,11E-10	0	3,45E-09	0	0
Human toxicity, non-cancer	CTUh	1,84E-06	7,89E-08	1,19E-07	2,03E-06	2,47E-08	4,56E-09	0	7,25E-08	0	0
Land use	Pt	723	70	251	1044	22	0	0	38	0	0

>> Environmental Information Inward opening 3-glass window kipp/dreh – ETIL-AL kd

Potential environmental impact – mandatory indicators according to EN 15804 – Inward opening 3-glass window kipp/dreh – ETIL-AL kd

Impact category	Unit	B5	B6	B7	C1	C2	С3	C4	D
Climate change – Fossil	kg CO₂ eq	0	0	0	0	0,49	0,01	3,13	-24,49
Climate change - Biogenic	kg CO₂ eq	0	0	0	0	0,00	0,01	20,49	-3,40
Climate change – Land use and LU change	kg CO₂ eq	0	0	0	0	0,00	0,00	0,00	-0,68
Climate change	kg CO₂ eq	0	0	0	0	0,49	0,02	23,62	-28,57
Ozone depletion	kg CFC11 eq	0	0	0	0	1,12E-07	6,39E-10	1,62E-07	-2,62E-06
Acidification	mol H+ eq	0	0	0	0	0,00	0,00	0,01	-0,17
Eutrophication, freshwater	kg P eq	0	0	0	0	3,31E-05	5,28E-06	1,50E-04	-1,44E-02
Eutrophication, freshwater	kg PO4 eq	0	0	0	0	1,02E-04	1,62E-05	4,60E-04	-4,41E-02
Eutrophication, marine	kg N eq	0	0	0	0	6,05E-04	2,26E-05	2,29E-03	-2,52E-02
Eutrophication, terrestrial	mol N eq	0	0	0	0	0,01	0,00	0,02	-0,25
Photochemical ozone formation	kg NMVOC eq	0	0	0	0	2,02E-03	4,62E-05	6,44E-03	-8,50E-02
Resource use, mi- nerals and metals	kg Sb eq	0	0	0	0	1,78E-06	3,15E-07	2,35E-06	2,51E-04
Resource use, fossils	MJ	0	0	0	0	7	2	12	-531
Water use	m³ depriv.	0	0	0	0	0,02	0,03	-0,01	-0,83
Particulate matter	disease inc.	0	0	0	0	3,42E-08	9,73E-10	1,09E-07	-1,88E-06
lonising radiation	kBq U-235 eq	0	0	0	0	0,04	0,16	0,05	-18,93
Ecotoxicity, freshwater	CTUe	0	0	0	0	6	1	17	-484
Human toxicity, cancer	CTUh	0	0	0	0	2,03E-10	2,12E-11	2,41E-09	-8,79E-08
Human toxicity, non-cancer	CTUh	0	0	0	0	5,79E-09	2,69E-10	3,45E-08	-1,04E-06
Land use	Pt	0	0	0	0	5	1	15	-267

>> Environmental Information Inward opening 3-glass window kipp/dreh – ETIL-AL kd

Climate impact – IPCC GWP100 – Inward opening 3-glass window kipp/dreh – ETIL-AL kd

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4
GHG-GWP	kg CO₂ eq	61,22	6,67	2,86	70,75	2,09	0,19	0	3,10	0	0
	,										
Impact category	Unit	B5	B6	B7	C1	C2	С3	C4	D		
GHG-GWP	kg CO₂ eq	0	0	0	0	0,49	0,01	3,12	-24,40		

Use of resources - Inward opening 3-glass window kipp/dreh - ETIL-AL kd

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4
PERE	LM	261,3	1,4	82,0	344,7	0,4	0,0	0,0	11,2	0,0	0,0
PERM	LM	290,9	0,0	33,4	324,3	0,0	0,0	0,0	0,0	0,0	0,0
PERT	MJ	552,2	1,4	115,5	669,0	0,4	0,0	0,0	11,2	0,0	0,0
PENRE	MJ	804,3	108,0	27,9	940,1	33,8	0,6	0,0	64,4	0,0	0,0
PENRM	LM	49,6	0,0	2,4	52,0	0,0	0,0	0,0	0,0	0,0	0,0
PENRT	MJ	853,9	108,0	30,3	992,1	33,8	0,6	0,0	64,4	0,0	0,0
SM	Kg	6,7	0,0	0,0	6,7	0,0	0,0	0,0	0,0	0,0	0,0
RSF	MJ	0,0	0,0	39,6	39,6	0,0	0,0	0,0	0,0	0,0	0,0
NRSF	LM	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
FW	m³	4,05	0,17	0,12	4,3	0,05	0,00	0,00	1,06	0,00	0,00
Abbreviations	materials renewable newable resources SM = Use	Jse of rene ; PERM = e primary primary er s used as r e of second Jse of non	Use of ren energy re nergy reso aw materi dary mate	ewable pr sources; P urces used als; PENR rial; RSF =	imary ene ENRE = U d as raw m T = Total u Use of rei	rgy resour se of non- naterials; F use of non- newable s	ces used a renewable ENRM = l -renewabl econdary	as raw ma e primary o Jse of non e primary fuels;	terials; PEl energy ex i-renewab	RT = Total cluding no le primary	use of n-re-

Impact category	Unit	B5	B6	B7	C1	C2	C3	C4	D				
PERE	LM	0,0	0,0	0,0	0,0	0,1	1,0	0,2	-275,9				
PERM	LM	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0				
PERT	LM	MJ 0,0 0,0 0,0 0,0 0,1 1,0 0,2 -2											
PENRE	LM	MJ 0,0 0,0 0,0 0,0 7,9 2,2 12,8 -553,3											
PENRM	LM	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0				
PENRT	LM	MJ 0,0 0,0 0,0 0,0 7,9 2,2 12,8 -553,3											
SM	Kg	Kg 0,0 0,0 0,0 0,0 0,0 0,0 0,0											
RSF	LM	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 LM											
NRSF	LM	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0				
FW	m ³	0,00	0,00	0,00	0,00	0,01	0,00	0,05	-0,42				
Abbreviations	ces used raw mate of non-re used as r as raw m = Use of	as raw ma rials; PER newable p aw materi aterials; Pl secondary	aterials; PE T = Total u primary en als; PENRM ENRT = To material;	RM = Use ise of rene ergy exclu VI = Use o otal use of RSF = Use	of renew. wable prir iding non- f non-rene non-renew of renew	ng renewa able prima nary energ renewable wable prim vable prim able secor fresh wat	ry energy gy resource primary e mary energe nary fuels	resources es; PENRE energy res gy resourc y re-sourc	s used as E = Use sources ces used ces; SM				

Waste production and output flows - Inward opening 3-glass window kipp/dreh - ETIL-AL kd

Waste production

Indicator	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	B 3
Hazardous waste disposed	kg	0,67	0	0	0,67	0	0	0	0	0
Non-hazardous waste disposed	kg	21,36	0	0	21,36	0	0	0	0	0
Radioactive waste disposed	kg	4,11E-03	0	0	4,11E-03	0	0	0	0	0
Indicator	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	0	0	0	0	0	0	0	0	0
Non-hazardous waste disposed	kg	0	0	0	0	0	0	0	0	0
						0	0	0	0	0

Output flows

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3
Components for reuse	kg	6,33E-05	0	0	6,33E-05	0	0	0	0	0
Material for recycling	kg	4,49E-02	0	3,35	3,40	0	0,009	0	0	0
Materials for energy recovery	kg	1,88E-02	0	7,09	7,11	0	1 <i>,</i> 685	0	0	0
Exported energy, electricity	MJ	4,22E-02	0	0	0,04	0	0	0	0	0
Exported energy, thermal	MJ	6,17E-02	0	0	0,06	0	0	0	0	0

Indicator	Unit	B4	B5	B6	B7	C1	C2	С3	C4	D
Components for reuse	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	0	0	0	0	0	5,00	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	10,13	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content - Inward opening 3-glass window kipp/dreh - ETIL-AL kd

Results per functional or declared unit				
BIOGENIC CARBON CONTENT	Unit	QUANTITY		
Biogenic carbon content in product	kg C	4,6		
Biogenic carbon content in packaging	kg C	0,9		

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

Annex C – Voluntary use stage scenario based on energy balance calculation – Inward opening 3-glass window kipp/dreh – ETIL-AL kd Standard windows

Use stage environmental impacts illustrates the annual environmental impacts due to the energy balance of the windows, based on Stockholm heating demand average and an energy balance formula based on the described scenario.

General information				
		Comments		
Heating method according to EN 17213 annex C	District heating from natural gas	LCI dataset: Heat, central or small-scale, natural gas {RER} market group for Cut-off, U		
Cooling method according to EN 17213 annex C	Electricity powered air cooler	LCI dataset: Electricity, low voltage {SE} market for Cut-off, U		
Climate Zone	111	According to Swedish building standards, used climate file: "Stockholm 1981-2010" from the Swedish Meteo-rological and Hydrological Institute		
Annual average temperature	6,6 °C	Stockholm		
Min indoor temperature	21 °C	Heating stops at this temperature		
Max indoor temperature	27 °C	Cooling stops at this temperature		
Cooling Factor	3	kWh cooling delivered per kWh of electricity		
Model (Calculation)	Single room			
Orientation	West (270°)			
Calculation method	Hourly			
Modelling program	VIP-Energy 4.3.2	Modeled as a 1 m ² room with concrete flooring and no walls or internal loads		
Environmental Impact assessment model	Environmental Footprint 3.0			

Technical specifications		
U-value	1,21 w/m², K	
Gg-value	60 %	
Gw-value	42 %	
Air leakage class	4	
Air leakage flow at +/- 50 Pa	0,2 l/s,m ²	
Daylight factor, LT-value	75 %	
Glass/frame ratio	0,70	
Total heating demand	91,46 kWh heat/year	
Total cooling demand	9,46 kWh electricity/year	

>> Annex C – Voluntary use stage scenario based on energy balance calculation – Inward opening 3-glass window kipp/dreh – ETIL-AL kd Standard windows

The results below are the environmental impacts that are presented in line with instructions from EN 17213 appendix C. It is worth noting that some units are differing from units that are presented in results for the LCA. For comparison, multiply the result below by the following factors:

Acidification: 1.31 to report kg SO₂, eq as mol H +, eq Eutrophication: 0.33 to report kg PO₄⁻³, eq. Kg P, eq Photochemical Ozone Creation Potential: 1.69 to report kg C₂H₄, eq as kg NMVOC, eq

Yearly environmental impacts			
Environmental impact category	Unit	Environmental impacts of heating, natural gas	Environmental impacts of cooling, electricity
Global Warming Potential	kg CO ₂ ,eq	25,06	0,81
Ozone Depletion Potential	kg CFC-11eq	2,47E-06	3,56E-08
Acidification Potential	kg SO ₂ ,eq	2,08E-02	2,88E-03
Eutrophication Potential	kg PO ₄ -3,eq	2,56E-03	1,25E-03
Photochemical Ozone Creation Potential	kg C ₂ H ₄	1,47E-02	1,56E-03
Abiotic Depletion Potential, minerals & metals	kg Sb,eq	3,12E-05	6,14E-05
Abiotic Depletion Potential, fuels.	MJ	355	110

Annex C – Voluntary use stage scenario based on energy balance calculation – Inward opening 3-glass window kipp/dreh – ETIL-AL kd Energy windows

Use stage environmental impacts illustrates the annual environmental impacts due to the energy balance of the windows, based on Stockholm heating demand average and an energy balance formula based on the described scenario.

General information				
		Comments		
Heating method according to EN 17213 annex C	District heating from natural gas	LCI dataset: Heat, central or small-scale, natural gas {RER} market group for Cut-off, U		
Cooling method according to EN 17213 annex C	Electricity powered air cooler	LCI dataset: Electricity, low voltage {SE} market for Cut-off, U		
Climate Zone	111	According to Swedish building standards, used climate file: "Stockholm 1981-2010" from the Swedish Meteo-rological and Hydrological Institute		
Annual average temperature	6,6 °C	Stockholm		
Min indoor temperature	21 °C	Heating stops at this temperature		
Max indoor temperature	27 °C	Cooling stops at this temperature		
Cooling Factor	3	kWh cooling delivered per kWh of electricity		
Model (Calculation)	Single room			
Orientation	West (270°)			
Calculation method	Hourly			
Modelling program	VIP-Energy 4.3.2	Modeled as a 1 m ² room with concrete flooring and no walls or internal loads		
Environmental Impact assessment model	Environmental Footprint 3.0			

Technical specifications		
U-value	1,02 w/m², K	
Gg-value	53 %	
Gw-value	37 %	
Air leakage class	4	
Air leakage flow at +/- 50 Pa	0,2 l/s,m ²	
Daylight factor, LT-value	74 %	
Glass/frame ratio	0,70	
Total heating demand	76,16 kWh heat/year	
Total cooling demand	17,14 kWh electricity/year	

>> Annex C – Voluntary use stage scenario based on energy balance calculation – Inward opening 3-glass window kipp/dreh – ETIL-AL kd Energy windows

The results below are the environmental impacts that are presented in line with instructions from EN 17213 appendix C. It is worth noting that some units are differing from units that are presented in results for the LCA. For comparison, multiply the result below by the following factors:

Acidification: 1.31 to report kg SO₂, eq as mol H +, eq Eutrophication: 0.33 to report kg PO₄⁻³, eq. Kg P, eq Photochemical Ozone Creation Potential: 1.69 to report kg C₂H₄, eq as kg NMVOC, eq

Yearly environmental impacts			
Environmental impact category	Unit	Environmental impacts of heating, natural gas	Environmental impacts of cooling, electricity
Global Warming Potential	kg CO ₂ ,eq	20,87	0,73
Ozone Depletion Potential	kg CFC-11eq	2,06E-06	3,22E-08
Acidification Potential	kg SO ₂ ,eq	1,73E-02	2,60E-03
Eutrophication Potential	kg PO ₄ -3,eq	2,13E-03	1,13E-03
Photochemical Ozone Creation Potential	kg C ₂ H ₄	1,22E-02	1,41E-03
Abiotic Depletion Potential, minerals & metals	kg Sb,eq	2,60E-05	5,56E-05
Abiotic Depletion Potential, fuels.	MJ	296	100

General information

Programme information				
Programme:	The International EPD® System			
Address:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden			
Website:	www.environdec.com			
E-mail:	info@environdec.com			

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product category rules (PCR): PCR 2019:14. Construction products and construction services. Version 1.2.5

PCR review was conducted by: PCR Committee: IVL Swedish Environmental Research Institute,

Swedish Environmental Protection Agency, SP Trä, Swedish Wood Preservation Institute, Swedisol,

SCDA, Svenskt Limträ AB, SSAB

Moderator: Martin Erlandsson, IVL Swedish Environmental Research Institute

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

EPD process certification

Third party verifier: Martyna Mikusinska, Sweco, Individual verifier approved by the International EPD® System

Procedure for follow-up of data during EPD validity involves third party verifier:

🗌 Yes 🛛 🗶 No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

References

General Programme Instructions of the International EPD® System. Version 3.01.

EN 15804:2012+A2:2019, "Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products"

EN ISO 14025:2014-02 Environmental labels and declarations – Type III environmental declarations – Principles and procedures, Edited in 2010.

EN ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework, 2006.

EN ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines, 2006.

ILCD International guide for life-cycle data system. General guide for life cycle assessment – Detailed guidance, 2010.

PCR Construction Products and Construction Services. 2019:14, version 1.2.5, the International EPD System.

PRé Consultants, "SimaPro 9.1" (PRé Consultants, 2019), http://www.pre-sustainability.com/simapro.

Ecoinvent, 'Ecoinvent' < https://www.ecoinvent.org/database/database.html>.

Hakkarainen Viktor, Miljögiraff AB, LCA Elitfönster Miljögiraff Report 973, 2021-10-15.

Mats Brånäs, Elitfönster, Certification and testing manager, mats.branas@elitfonster.se

