ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH ISO 14025:2006 and EN 15804:2012+A2:2019 for

Copolymer Coated Aluminum Tape

Programme: The International EPD* System

Programme Operator: EPD International AB

Local Operator: EPD Turkey

> S-P Code: S-P-04788

Publication Date: 2022-06-30

Validity Date: 2027-07-01

ENVIRONMENTAL PRODUCT DECLARATIONS

Programme Information

ISO standard ISO 21930 and CEN standard EN 15804 serves as the core Product Category Rules (PCR)

Product Category Rules (PCR):

2019:14 Version 1.11, 2021-02-05, Construction

Products and CPC 54 Construction Services, EN 15804:2012 + A2:2019 Sustainability of Construction Works

PCR review was conducted by:

The Technical Committee of the International EPD® System. Review chair: Claudia A. Peña, University of Concepción, Chile

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

EPD process certification

EPD verification

Third party verifier: Prof. Ing. Vladimír Kočí, Ph.D., MBA LCA Studio Šárecká 5,16000 Prague 6- Czech Republic

Approved by: The International EPD® System Technical Committee, supported by the Secretariat

Procedure for follow-up of data during EPD validity involves third party verifier:

Yes

No

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

The International EPD® System

EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden

www.environdec.com info@environdec.com

EPD Turkey

www.epdturkey.org info@epdturkey.org

managed and run by
SÜRATAM
www.suratam.org
Nef 09 B Blok No:7/15 34415
Kagithane/Istanbul, Turkey

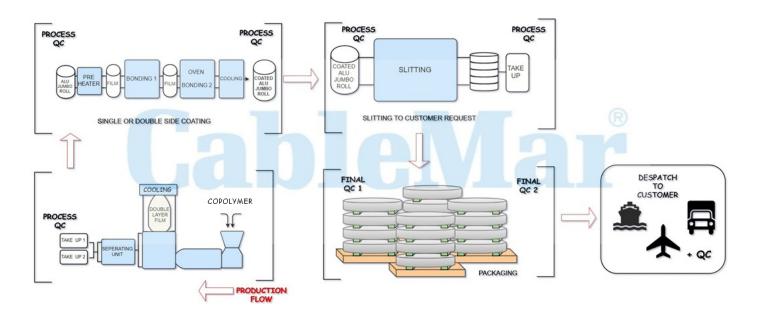
About the Company

Kablomar Kablo Hammaddeleri San. ve Tic. Ltd. Sti.

CableMar was firstly established in 2004 in Sharjah-UAE to serve Cable Industry as the dealer and stockist of different types of raw materials. In 2006 the company completed its organization in Turkey. Since then, CableMar has been constantly evolving and becoming nowadays a solid company in the field of coating/lamination and converting Metallic/Non-Metallic Tapes (e.g., Aluminum, Steel, and Copper) with different types of plastics and chemicals for the Cable Industry. In December 2021, the new modern plant which has been designed and built up with the latest technology has commenced mass production. At the same time, the setup process of our new cold rolling aluminum machine is started.

The company is constantly developing from both a technological and an organizational point of view. CableMar works according to a completely integrated and traceable production process, from the raw material to the finished products according to ISO 9001: 2015, ISO 14001: 2015, and ISO 45001: 2018. This quality and efficiency philosophy guarantees Customer satisfaction and respect for the environment.

About the Product


Kablomar carries out the production of copolymer coated aluminum tape in three processes.

First, the mono-extrusion film production machine is filled with a raw materials mixture of EAA and other chemical supportive additivess in certain proportions. The mixture is melted at approximately 150-160 degrees and the copolymer film became suitable for the desired coating color, width, thickness, and quantity. The copolymer film and the bare aluminum foil are loaded into the coating machine in a single/double-side in accordance with the customer's request. Before the oven, the loaded materials are bound to each other by the pre-lamination process in the coating machine, and they are passed through a five-meter-long tunnel oven at certain speeds with a temperature of approximately 200-300 degrees. The bare aluminum foil and the copolymer film pass through the coating line and becomes completely adhered to each other with the help of temperature (HEAT). In this way, the copolymer-coated aluminum product, which is the main product, becomes ready for slitting.

In the third process, the full-automatic double shafts slitting machine is fixed according to the desired ID (inner diameter), width, and length then finally the production of copolymer-coated aluminum tape is completed by slitting the master roll into tapes. Finally, the tapes are packed in accordance with the customer's specification and became ready for shipment. The aluminium used in the product comes mostly from Asia and Russia.

The production flow of copolymer coated aluminum tape is schematized below.

Specifications			
Property	Unit	Typical Value	Test Method
Appearance		The surface is straight, free from burrs, moisture, dust, pinholes, creases, cuts, tear or adhesion	
Color		Natural	
Length	meter	1050, 2100, 4200	
Core ID	mm	76, 102, 120, 150, 406	
Aluminium Thickness	micron	80-500	
Copolymer Thickness	micron	50 ± 10	
Tensile Strength	Мра	≥ 75	ASTM B736
Peal Strength	N/cm	≥ 6.10	ASTM B736
Heat Seal Strength	N/cm	≥ 17.5	ASTM B736
Filler/Flooding Resistance at 68 ± 1 °C, 168 hours	N/cm	No delamination	REA PE-39, PE-89
Peal Strength of Water Resistance at 68 ± 1 °C, 168 hours		≥ 6.10	ASTM B736
Dielectric Strength (both side, DC 2 kV, 1 min)		Without breakdown	
Corossion Resistance	Grade	Min 7.	

Included Product Types and Thicknesses

The thickness of aluminium and copolymer used in the product varies according to customer demand. The company's thickness range for aluminium is between 80-500 micron and 50 ± 10 micron for the copolymer. Furthermore, the final product can be one/two sided coated. The included product types and thicknesses are described below.

Product Type	Aluminium Thickness (micron)	Total copolymer Thickness (micron)
80/45	80	45
100/50	100	50
45/184/45	184	90
150/50	150	50
50/150/50	150	100
50/200/50	200	100
200/50	200	50
300/50	300	50
350/50	350	50
300/60	300	60

Product Composition

Aluminium: 82-92 %

• Ethylene acrylic acid: 8- 18 %

Packaging

Slit rolls are wound uniform and tightly on cardboard or steel cores. Rolls are seperated with plastic, carton or wooden separators. The stacked rools are packed on wooden pallets with moisture prood materials.

REACH Regulation

No substances included in the Candidate List of Substances of Very High Concern for authorization under the REACH regulations are present in this product either above the threshold for registration with the European Chemicals Agency or above 0.1% (wt/wt).

LCA Information

Declared Unit	1 kg Copolymer Coated Aluminum Tape
Time Representativeness	2021
Database(s) and LCA Software Used	Ecoinvent 3.8 and SimaPro 9.3
System Boundaries	Cradle to gate with options, modules C1-C4, module D and with optional modules (A1–A3 + A4 + C + D)

The inventory for the LCA study is based on the 2021 production figures for Kablomar's copolymer coated aluminum tape produced at their factory located in Kocaeli.

This EPD's system boundary is cradle to gate with options, modules C1-C4, module D and with optional modules (A1-A3+A4+C+D).

The end of-life stage (Modules C1-C4) and resource recovery stage (Module D) are modelled on the assumptions that 90 % of the aluminium is recycled and the rest is landfilled.

The system boundaries in tabular form for all modules are shown in the table below.

		roduc Stage		Pro	ruction cess age			Us	e Stag	ge .					of Life age		Benefits and Loads
	Raw Material Supply	Transport	Manufacturing	Transport	Construction Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction. demolition	Transport	Waste Processing	Disposal	Future reuse. recycling or energy recovery potentials
Module	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Modules Declared	X	X	Х	X	ND	ND	ND	ND	ND	ND	ND	ND	Х	X	X	X	Х
Geography	GLO	GLO	TR	GLO	-	-	-	-	-	-	-	-	GLO	GLO	GLO	GLO	GLO
Specific Data Used	>90%	>90%	>90%	>90%	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation- products			≤10	%		-	-	-	-	-	-	-	-	-	-	-	-
Variation- Sites			NF	R		-	-	-	-	-	-	-	-	-	-	-	-

System Boundaries and Description

A1 - Raw Material Supply

Raw material supply stage includes raw material extraction and pre-treatment processes before its use in manufacturing. The main raw materials used in the declared product are aluminium, ethylene acrylic acid and, low-density polyethylene.

A2 - Raw Material Transport

Transport information of the raw materials are provided by the manufacturer. The distances and routes are calculated accordingly.

A3 - Manufacturing

Manufacturing processes consist of three main steps. The first step involves the production of copolymer via the mono-extrusion film production machine. In the second step, the copolymer film and the aluminium foil are loaded into the coating machine and becomes completely adhered to each other. Then, automatic double shafts cut the product in desired diameter, width and length.

A4 - Final Product Transport

The transport distances and routes of the final product are provided by the manufacturer. The distances and routes are calculated accordingly.

C1 - Deconstruction

The product is mainly used in high-voltage transmission lines and assumed that it dismantled by hand/small equipments, thus, the effect of C1 stage is assumed to be zero.

C2 - Waste Transport

This step includes the transport of materials after their use phase. The average distance was assumed as 100 km from demolition site to a waste area.

C3 - Waste Processing

Waste materials can be reclyced directly or disposed of by considering the different scenarios. It is assumed that no process is needed for this stage.

C4 - Disposal

It is assumed that 90 % of the aluminium used in the product is recycled whereas the rest is landfilled.

D - Benefits

According to International Aluminium Institute's (IAI) global aluminium recycling data, the global recycling efficiency rate of aluminium is 76% (2020). Thus, 76% of the aluminium that is recycled is assumed as benefit.

LCA Results											
Impact Category	Unit	A1	A2	АЗ	A1-A3	A4	C1	C2	C3	C4	D
GWP- Fossil	kg CO ₂ eq	24.7	0.292	0.169	25.2	0.454	0	0.016	0	0.004	-16.3
GWP- Biogenic	kg CO ₂ eq	-0.055	11.9E-6	0.002	-0.053	42.4E-6	0	14.1E-6	0	0.007	0.044
GWP- Luluc	kg CO₂ eq	0.064	182E-6	0.001	0.065	277E-6	0	6.5E-6	0	4.12E-6	-0.043
GWP- Total	kg CO₂ eq	24.7	0.292	0.172	25.2	0.454	0	0.016	0	0.012	-16.3
ODP	kg CFC-11 eq	587E-9	59.3E-9	4.0E-9	650E-9	93.1E-9	0	3.77E-9	0	417E-12	-382E-9
AP	mol H+ eq	0.155	0.008	0.001	0.164	0.012	0	46.3E-6	0	24.8E-6	-0.106
*EP- Freshwater	kg P eq	0.014	10.2E-6	175E-6	0.014	16.7E-6	0	1.1E-6	0	1.17E-6	-0.009
EP- Freshwater	kg (PO ₄) eq	0.042	30.5E-6	0.001	0.043	50.1E-6	0	3.20E-6	0	3.50E-6	-0.028
EP- Marine	kg N eq	0.026	0.002	187E-6	0.028	0.003	0	9.40E-6	0	22.5E-6	-0.017
EP- Terrestrial	mol N eq	0.266	0.023	0.002	0.291	0.034	0	102E-6	0	66.4E-6	-0.177
POCP	kg NMVOC	0.076	0.006	465E-6	0.082	0.009	0	39.4E-6	0	21.6E-6	-0.050
ADPE	kg Sb eq	21.1E-6	448E-9	232E-9	21.8E-6	755E-9	0	57.7E-9	0	8.38E-9	-12.5E-6
ADPF	MJ	260	3.82	1.82	266	6.01	0	0.247	0	0.053	-169
WDP	m³ depriv.	3.15	0.007	0.062	3.22	0.011	0	0.001	0	0.001	-2.01
PM	disease inc.	1.25E-6	10.8E-9	4.8E-9	1.27E-6	18.1E-9	0	1.31E-9	0	368E-12	-831E-9
IR	kBq U-235 eq	0.338	0.018	0.001	0.357	0.028	0	0.001	0	309E-6	-0.186
ETP- FW	CTUe	643	2.40	1.78	647	3.84	0	0.194	0	55.2	-429
HTTP- C	CTUh	21.8E-9	157E-12	31.6E-12	22.0E-9	239E-12	0	6.2E-12	0	3.54E-12	-14.7E-9
HTTP- NC	CTUh	526E-9	1.70E-9	1.45E-9	529E-9	2.82E-9	0	196E-12	0	99.0E-12	-354E-9
SQP	Pt	42.0	0.828	0.157	43.0	1.51	0	0.172	0	0.070	-27.8
Acronyms	GWP-total: Climate of layer depletion, AP: A al, POCP: Photocher matter, IR: Ionising r soil quality.	Acidification terre	estrial and freshw DPE: Abiotic depl	ater, EP-freshwate letion - elements,	er: Eutrophication ADPF: Abiotic de _l	freshwater, EP-m pletion- fossil res	narine: Eutr ources, W[ophication maring OP: Water scarcity	e, EP-terres , PM: Resp	strial: Eutrophica iratory inorgani	ation terrestri- cs- particulate
Legend	A1: Raw Material Su Processing, C4: Disp					l A3, A4: Transpo	rt to Site. C	1: Deconstruction	n / Demolit	tion, C2: Transp	ort, C3: Waste
Disclaimer 1	This impact category nuclear accidents, o construction materia	ccupational expo	sure nor due to r	adioactive waste							
Disclaimer 2	The results of this er	nvironmental imp	act indicator sha	ll be used with car	re as the uncertai	nties on these re	sults are hi	gh or as there is li	mited expe	erienced with th	ne indicator.
*Disclaimer 3	EP-freshwater: This ReCiPe; http://eplca.				q as required in t	the charactarizati	on model.	(EUTREND model	, Struijs et	al, 2009b, as in	nplemented in

Resource Use											
Impact Category	Unit	A1	A2	А3	A1-A3	A4	C1	C2	C3	C4	D
PERE	MJ	16.3	0.029	0.392	16.7	0.048	0	0.004	0	0.003	-11.1
PERM	MJ	0	0	0	0	0	0	0	0	0	0
PERT	MJ	16.3	0.029	0.392	16.7	0.048	0	0.004	0	0.003	-11.1
PENRE	MJ	253	3.82	1.82	259	6.01	0	0.247	0	0.053	-169
PENRM	MJ	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	253	3.82	1.82	259	6.01	0	0.247	0	0.053	-169
SM	kg	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0
FW	m³	0.091	383E-6	0.001	0.092	0.001	0	41.3E-6	0	42.7E-6	-0.062
Acronyms	PERE: Use of rene	ewable primary e	nergy excluding r	esources used as	raw materials, PI	RM: Use of rene	wable prima	ry energy resourc	es used as ra	aw materials, PEI	RT: Total use of

PERE: Use of renewable primary energy excluding resources used as raw materials, PERM: Use of renewable primary energy resources used as raw materials, PERT: Total use of renewable primary energy, PENRE: Use of non-renewable primary energy excluding resources used as raw materials, PENRM: Use of non-renewable primary energy resources used as raw materials, PENRT: Total use of non-renewable primary energy, SM: Secondary material, RSF: Renewable secondary fuels, NRSF: Non-renewable secondary fuels, FW: Net use of fresh water.

Waste & Output	t Flows										
Impact Category	Unit	A1	A2	A3	A1-A3	A4	C1	C2	C3	C4	D
HWD	kg	0	0	0	0	0	0	0	0	0	0
NHWD	kg	0	0	0.062	0.062	0	0	0	0	0	0
RWD	kg	0	0	0	0	0	0	0	0	0	0
CRU	kg	0	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0	0
EE (Electrical)	MJ	0	0	0	0	0	0	0	0	0	0
EE (Thermal)	MJ	0	0	0	0	0	0	0	0	0	0

Acronyms HWD: Hazardous waste disposed, NHWD: Non-hazardous waste disposed, RWD: Radioactive waste disposed, CRU: Components for reuse, MFR: Material for recycling, MER: Materials for energy recovery, EE (Electrical): Exported energy electrical, EE (Thermal): Exported energy, Thermal.

A1: Raw Material Supply, A2: Transport, A3: Manufacturing, A1-A3: Sum of A1, A2, and A3, A4: Transport to Site. C1: Deconstruction / Demolition, C2: Transport, C3: Waste Processing, C4: Disposal, D: Benefits and Loads Beyond the System Boundary

Climate impact

Legend

Indicator	Unit	A1	A2	A3	A1-A3	A4	C1	C2	С3	C4	D
*GHG-GWP	kg CO ₂ eq	24.3	0.290	0.167	24.8	0.451	0	0.016	0	0.004	-16.1

GWP-GHG = Global Warming Potential total excl. biogenic carbon following IPCC AR5 methodology

^{*} The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013

References

/GPI/ General Programme Instructions of the International EPD® System. Version 4.0.

/EN ISO 9001/ Quality Management Systems - Requirements

/EN ISO 14001/ Environmental Management Systems- Requirements

/EN ISO 50001/ Energy Management Systems- Requirements

/ISO 14020:2000/ Environmental Labels and Declarations — General principles

/EN 15804:2012+A2:2019/ Sustainability of construction works- Environmental Product Declarations — Core rules for the product category of construction products

/ISO 14025/ DIN EN ISO 14025:2009-11: Environmental labels and declarations - Type III environmental declarations — Principles and procedures

/ISO 14040/44/ DIN EN ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006) and Requirements and guidelines (ISO 14044:2006)

/PCR for Construction Products and CPC 54 Construction Services/ Prepared by IVL Swedish Environmental Research Institute, Swedish Environmental Protection Agency, SP Trä, Swedish Wood Preservation Institute, Swedisol, SCDA, Svenskt Limträ AB, SSAB, The International EPD System, 2019:14 Version 1.11 DATE 2019-12-20

/The International EPD® System/ The International EPD® System is a programme for type III environmental declarations, maintaining a system to verify and register EPD®s as well as keeping a library of EPD®s and PCRs in accordance with ISO 14025. www.environdec.com

/Ecoinvent / Ecoinvent Centre, www.ecoinvent.org

/SimaPro/ SimaPro LCA Software, Pré Consultants, the Netherlands, www.pre-sustainability.com

Contact Information

	The International EPD® System	
Programme	www.environdec.com	
		EPD registered through fully aligned
	EPD International AB	regional programme:
	Box 210 60	EPD Turkey
	SE-100 31 Stockholm, Sweden	www.epdturkey.org
		info@epdturkey.org
	www.environdec.com	
Programme operator	info@environdec.com	SÜRATAM A.Ş.
		Nef 09 B Blok No:7/15, 34415
		Kağıthane / İstanbul, TÜRKİYE
		www.suratam.org
	FPD [®]	FPD®
	THE INTERNATIONAL ERROR OVERTEN	TURKEY LPD
	THE INTERNATIONAL EPD® SYSTEM	ENVIRONMENTAL PRODUCT DECLARATIONS
	C-LI-NI-®	Contact: Melis Konuk
	CableMar	Phone: (+90) 262 373 64 65
Owner of the declaration		
	Arslanbey OSB Mh, 1. Cd No:6/3, 41285	
	Kartepe, Kocaeli, TÜRKİYE	www.cablemar.com
	0.00	The United Kingdom:
		4 Clear Water Place
	Sustainability Consulting	Oxford OX2 7NL, UK
.CA practitioner and EPD Design	Turkey:	0 800 722 0185
	Nef 09 B Blok No:7/46-47	
	34415 Kagıthane/Istanbul, TÜRKİYE	www.metsims.com
	+90 212 281 13 33	info@metims.com
		LCA Studio
	LCA.	Šárecká 5,16000
^{ord} party verifier	Studio	Prague 6- Czech Republic
	Prof. Ing. Vladimír Kočí, Ph.D., MBA	www.lcastudio.cz

CableMar