

sakumetall

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

STEEL PROFILE DOOR

sakumetall

SAKU METALL UKSETEHAS AS

Programme: The International EPD® System, www.environdec.com Programme operator: EPD International AB

EPD registration PL number: S-P-07288

Publication date: 2022-10-07

Geographical scope Nordic and Baltic countries

Valid until:

2022-10-07

Environmental Product Declaration created with One Click LCA

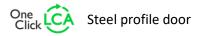
GENERAL INFORMATION

MANUFACTURER INFORMATION

Manufacturer	Saku Metall Uksetehas AS
Address	Põrguvälja tee 25, Lehmja, 75306 Estonia
Contact details	info@sakumetall.ee
Website	https://sakumetall.ee

PRODUCT IDENTIFICATION

Product name	Steel profile door
Place(s) of production	Lehmja, Estonia
CPC code	4212 Doors, windows and their frames and thresholds for doors, of iron, steel or aluminium


The International EPD System

EPDs within the same product category but from different programmes may not be comparable.

EPD INFORMATION

The EPD owner has the sole ownership, liability, and responsibility for the EPD. Construction products EPDs may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

EPD program operator	The International EPD System
EPD standards	This EPD is in accordance with EN 15804+A2 and ISO 14025 standards.
Product category rules	The CEN standard EN 15804 serves as the core PCR. In addition, the Int'l EPD System PCR 2019:14 Construction products, version 1.2.3 (08.07.2022) is used. c-PCR 007 Windows and doors
EPD author	Janno Jegers, Saku Metall AS
EPD verification	Independent verification of this EPD and data, according to ISO 14025: □ Internal certification ☑ External verification
EPD verification	data, according to ISO 14025:
	data, according to ISO 14025: □ Internal certification ☑ External verification
Verification date	 data, according to ISO 14025: □ Internal certification ☑ External verification 2022-10-05
Verification date EPD verifier	 data, according to ISO 14025: □ Internal certification External verification 2022-10-05 Silvia Vilčeková, Silcert, s.r.o.
Verification date EPD verifier EPD number	 data, according to ISO 14025: □ Internal certification External verification 2022-10-05 Silvia Vilčeková, Silcert, s.r.o.

PRODUCT INFORMATION

PRODUCT DESCRIPTION

Saku Metal Uksetehas uses predominantly Forster Profile Systems Ltd profiles for making steel profile doors. Study is an weighted average of profile doors, made of Forster Unico profile and Forster Presto profile.

PRODUCT APPLICATION

Carbon steel doors are used in different residential and non-residential buildings.

TECHNICAL SPECIFICATIONS

Steel profile doors used in the study.

	Product	Declared unit weight, kg
Model 1	Steel profile door Unico	52,13
Model 2	Steel profile door Presto	34,63

PRODUCT STANDARDS

All products are manufactured and certified according to EN 14351-1:2006+A2:2016 standard.

Management systems are certified according to ISO 9001:2015, ISO14001:2015 and ISO 45001:2018

PHYSICAL PROPERTIES OF THE PRODUCT

Product properties can be found on the manufacturer website at https://sakumetall.ee/uksetehas

ADDITIONAL TECHNICAL INFORMATION


Further information can be found at https://sakumetall.ee/uksetehas

PRODUCT RAW MATERIAL COMPOSITION

Product and Packaging Material	Weight, kg	Post- consumer %	Renewable %	Country Region of origin
Glazing	22,62	0	0	EU
Carbon steel (zinc coated)	17,85	54		EU & non-EU
Hinges and other metal fixings	0,96	54	0	EU & non-EU
Seals	0,93	0	0	EU & non-EU
Stainless steel	0,92	17	0	EU
Powder coat	0,5	0	0	EU
Wooden packaging	3,56	0	100	Estonia
Plastic packaging	0,24	0	0	EU

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Steel profile door production starts with cutting steel profiles and preparing them for welding. All the profiles are premade by Forster Profile Systems Ltd. For good weathering resistance, mostly zinc coated steel profiles are used.

After welding the profiles, smaller details are added to the products and the door leaf and frame are matched together for welding hinges and preforming quality check. Next step is surface treatment and powder coating. For that, door leaf and frame have to be separated. After powder coating, door is assembled again and going to final assembly where glass, seals and other small parts are attached to the door or frame. Last steps are final quality control, packing and stacking.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions,

environmental impacts of fuel production, as well as related infrastructure emissions.

Transportation distances from the production site gate to the installation site have been calculated using most likely scenarios - 40% of products are installed in Estonia, 30% in Finland and 30% in Sweden. Average distance is 180 km by lorry and 153 km by ferry. Vehicle capacity utilization volume factor is assumed to be 100% which means full load. In reality, it may vary but as role of transportation emissions in total results is small, the variety in load is assumed to be negligible. Empty returns are not taken into account as it is assumed that return trip is used by the transportation company to serve the needs of other clients. Transportation does not cause losses as product are packaged properly.

In the installation, energy consumption is assumed negligible as no machinery is needed for installation. There is no loss on site during construction activities. Installation materials are negligible and not included in this assessment.

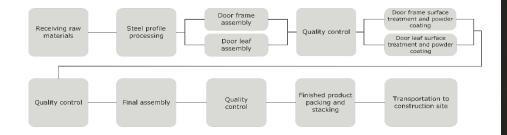
Installation module includes waste treatment of packaging waste as well as Biogenic CO2 released from wood pallets.

PRODUCT USE AND MAINTENANCE (B1-B7)

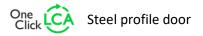
This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

4


PRODUCT END OF LIFE (C1-C4, D)

At the end of life, in demolition phase, it is assumed that 100% of doors are removed and collected as separate waste (C1) and sent (C2) to closest recycling facility (C3).


It is assumed that materials are separated and 95% steel and 30% of glass are sent to recycling. 5% of steel and 70% of glass goes to the landfill with other inert material (C4). Rest of waste is incinerated (C4).

As steel and glass are recyclable, they are recycled into raw material which can replace virgin material (D). Packaging material is incinerated for co-production of electricity and heat (D).

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

LIFE-CYCLE ASSESSMENT INFORMATION

Period for data 2021

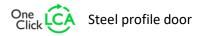
DECLARED AND FUNCTIONAL UNIT

Declared unit	1,0 m x 1,0 m. It is in accordance with EN 17213. The standard door used for the calculations is 1,23 m x 2,18 m. Surface area of said door is 2,6814 m2, which were used to obtain information for 1 m2 of the product.
Mass per declared unit	43.33 kg

BIOGENIC CARBON CONTENT

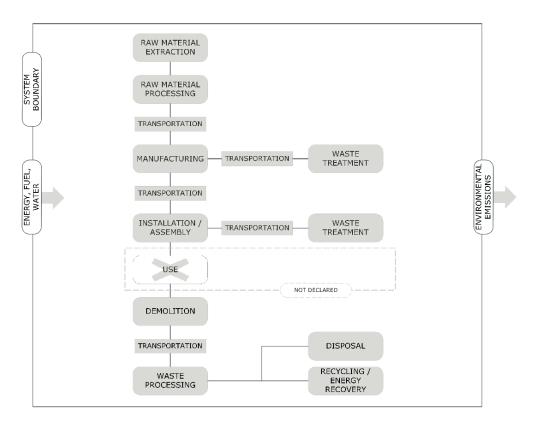
Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C N/A

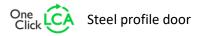

Biogenic carbon content in packaging, kg C 1.5994

SYSTEM BOUNDARY

This EPD covers the cradle to gate with options scope with the following modules; A1 (Raw material supply), A2 (Transport) and A3 (Manufacturing), A4 (Transport), A5 (Assembly) as well as C1 (Deconstruction), C2 (Transport at end-of-life), C3 (Waste processing) and C4 (Disposal). In addition, module D - benefits and loads beyond the system boundary is included.


Proc	duct s	tage		embl age			U	lse stag	e			End of life stage Beyond the system boundari								
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D	D	D		
x	x	x	x	x	MND	MND	MND	MND	MND	MND	MND	x	x	x	x	x	x	×		
Geo	graph	y , by 1	wo-le	tter IS	iO coun	try code	e or regi	ons. Th	e Intern	ational	EPD Sy	stem	only.		1					
EU	EU	EU	EU	EU	-	-	-	-	-	-	-	EU	EU	EU	EU		EU			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling		

Modules not declared = MND. Modules not relevant = MNR.


CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the EN 15804:2012+A2:2019 and the applied PCR. The study does not exclude any hazardous materials or substances.

The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

For easier modelling and because of lack of accuracy in available modelling resources few constituents under 0,1% of product mass are excluded. These include some ancillary materials which are all present in the product only in very small amounts and have no serious impact on the emissions of the product.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation.

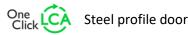
In this study, as per EN 15804, allocation is conducted in the following order;

1. Allocation should be avoided.

2. Allocation should be based on physical properties (e.g. mass, volume) when the difference in revenue is small.

3. Allocation should be based on economic values.

All input data used in this assessment that Saku Metall Uksetehas has influence over are plant-specific data for the production year 2021.

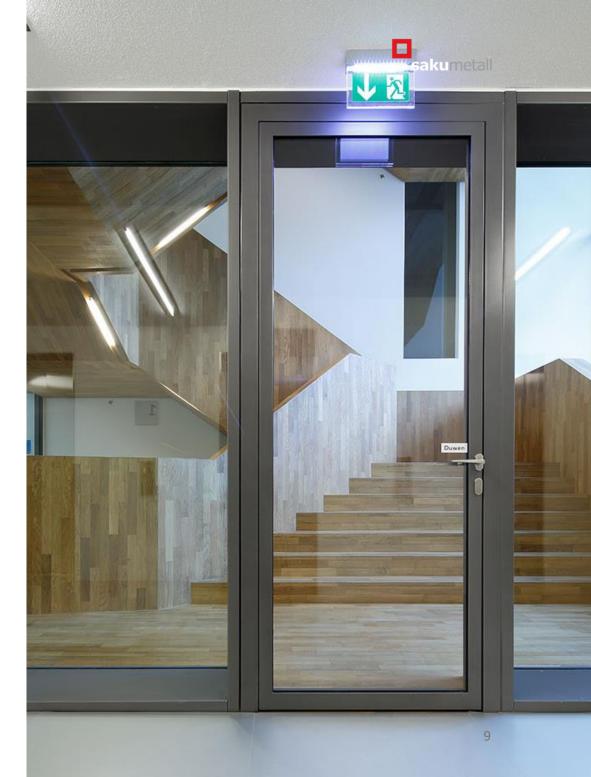

Module A1: Co-product allocation is applied to raw steel and off-cuts that are sold as scrap. Allocation is based on economic values. Module A3: During normal production, there are a lot of different products, mainly doors or products related to doors, produced in the factory. Therefore, electricity, natural gas, LPG and water used are allocated on yearly sums of produced products by volume and used energy.

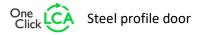
Module C1: It is assumed that no machinery is used for demolition process due to that, there is no energy consumption.

Module C2: It is assumed that the product does not lose any mass during its usage and at the end of life is sent to the closest recycling facility with estimated average distance 50 km. Module A2 and C2: Transportation is assumed to be lorry with a fill rate 100%. In reality, it may vary but as role of transportation emissions in total results is small, the variety in load is assumed to be negligible. Empty returns are not taken into account as it is assumed that return trip is used by the transportation company to serve the needs of other clients.

Module C3: It is assumed that the waste is transported to the recycling facility as separate waste, where steel is separated from the glass. 95% of steel is assumed to be recycled, the rest is assumed to be mixed with other materials and are landfilled. 30% of glass is assumed to be recycled, the rest is assumed to be landfilled. Module C4: It is assumed that calcium silicate board, 70% of glass and 5% of steel is sent to landfill and rubber seals are incinerated without energy recovery. Coating powder is incinerated in steel recycling plant without energy recovery.

Allocation used in Ecoinvent 3.6 environmental data sources follows the methodology 'allocation, cut-off by classification'. This methodology is in line with the requirements of the EN 15804 standard.


AVERAGES AND VARIABILITY


Primary data represents the manufacturing of 2 different doors. The data was used to calculate weighted average impacts of said doors. The weighted average of total GWP in modules A1-A3 is 117 kg CO2e. The variations of total GWP in A1-A3 is from 108 kg CO2e for product Model 1 to 129 kg CO2e for product Model 2.

The primary data was averaged by calculating a weighted average of the products consumption of raw materials, energy and production of wastes. The production amount mass shares per each product was used in the weighing.

Data specificity and GWP-GHG variability for GWP-GHG for A1-A3.

Supply-chain specific data for GWP-GHG	>95 %
Variation in GWP-GHG between products	-9, +8 %
Variation in GWP-GHG between sites	Not relevant

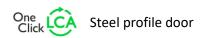

ENVIRONMENTAL IMPACT DATA

Note: additional environmental impact data may be presented in annexes.

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
GWP – total	kg CO₂e	9,61E1	4,26E0	1,65E1	1,17E2	2,19E0	6E0	MND	0E0	1,97E-1	4,65E-1	3,8E0	-2,23E1						
GWP – fossil	kg CO₂e	9,56E1	4,26E0	2,23E1	1,22E2	2,21E0	1,37E-1	MND	0E0	1,97E-1	4,9E-1	3,8E0	-2,76E1						
GWP – biogenic	kg CO₂e	4,35E-1	2,88E-3	-5,85E0	-5,41E0	5,77E-4	5,86E0	MND	0E0	1,43E-4	-2,57E-2	1,69E-3	5,28E0						
GWP – LULUC	kg CO₂e	9,83E-2	1,2E-3	4,81E-3	1,04E-1	9,89E-4	1,27E-4	MND	0E0	5,93E-5	5,54E-4	6,48E-5	-8,12E-3						
Ozone depletion pot.	kg CFC-11e	7,52E-6	9,86E-7	3,07E-6	1,16E-5	4,81E-7	1,31E-8	MND	0E0	4,63E-8	7,25E-8	6,02E-8	-1,56E-6						
Acidification potential	mol H⁺e	8,91E-1	1,74E-2	1,11E-1	1,02E0	3,18E-2	4,99E-4	MND	0E0	8,27E-4	5,78E-3	1,89E-3	-1,85E-1						
EP-freshwater ³⁾	kg Pe	4,48E-3	3,32E-5	3,6E-4	4,88E-3	1,52E-5	4,87E-6	MND	0E0	1,6E-6	3,3E-5	2,76E-6	-1,49E-3						
EP-marine	kg Ne	1,21E-1	5,17E-3	2E-2	1,46E-1	8,19E-3	1,15E-4	MND	0E0	2,49E-4	1,29E-3	6,77E-4	-3,39E-2						
EP-terrestrial	mol Ne	2,37E0	5,71E-2	1,95E-1	2,62E0	9,09E-2	1,29E-3	MND	0E0	2,75E-3	1,5E-2	7,47E-3	-3,95E-1						
POCP ("smog")	kg NMVOCe	4,16E-1	1,85E-2	6,37E-2	4,98E-1	2,44E-2	4E-4	MND	0E0	8,85E-4	4,09E-3	2,06E-3	-1,5E-1						
ADP-minerals & metals	kg Sbe	4,35E-2	6,63E-5	3,72E-5	4,36E-2	4,35E-5	1,5E-6	MND	0E0	3,36E-6	2,57E-5	2,27E-6	-6,29E-4						
ADP-fossil resources	MJ	1,17E3	6,52E1	3,62E2	1,59E3	3,15E1	1,77E0	MND	0E0	3,06E0	6,99E0	4,3E0	-2,57E2						
Water use ²⁾	m³e depr.	4,13E1	2,35E-1	3,78E0	4,53E1	8,8E-2	2,75E-2	MND	0E0	1,14E-2	1,06E-1	2,23E-1	-1,12E1						

1) GWP = Global Warming Potential; EP = Eutrophication potential; POCP = Photochemical ozone formation; ADP = Abiotic depletion potential. 2) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator. 3) Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO₄e.

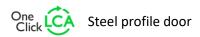

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Renew. PER as energy	MJ	1,05E2	7,86E-1	1,77E1	1,23E2	3,65E-1	1,52E-1	MND	0E0	3,85E-2	1,04E0	6,34E-2	-6,02E1						
Renew. PER as material	MJ	0E0	0E0	5,64E1	5,64E1	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Total use of renew. PER	MJ	1,05E2	7,86E-1	7,41E1	1,79E2	3,65E-1	1,52E-1	MND	0E0	3,85E-2	1,04E0	6,34E-2	-6,02E1						
Non-re. PER as energy	MJ	1,17E3	6,52E1	3,51E2	1,58E3	3,15E1	1,77E0	MND	0E0	3,06E0	6,99E0	4,3E0	-2,57E2						
Non-re. PER as material	MJ	0E0	0E0	1,15E1	1,15E1	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Total use of non-re. PER	MJ	1,17E3	6,52E1	3,62E2	1,59E3	3,15E1	1,77E0	MND	0E0	3,06E0	6,99E0	4,3E0	-2,57E2						
Secondary materials	kg	1,14E1	0E0	3,75E-3	1,14E1	0E0	0E0	MND	0E0	0E0	0E0	0E0	1,52E1						
Renew. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Non-ren. secondary fuels	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Use of net fresh water	m ³	9,46E-1	1,3E-2	1,81E-1	1,14E0	4,56E-3	5,14E-4	MND	0E0	6,38E-4	3,01E-3	8,84E-3	-1,94E-1						

6) PER = Primary energy resources

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	2,05E1	6,49E-2	4,53E-1	2,1E1	3,26E-2	7,33E-3	MND	0E0	2,98E-3	0E0	6,97E-2	-8,09E0						
Non-hazardous waste	kg	2,15E2	6,51E0	1,05E1	2,32E2	1,63E0	2,95E-1	MND	0E0	3,29E-1	0E0	1,81E1	-6,97E1						
Radioactive waste	kg	3,28E-3	4,47E-4	1,53E-3	5,26E-3	2,17E-4	9,18E-6	MND	0E0	2,1E-5	0E0	2,54E-5	-3,57E-4						


END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						
Materials for recycling	kg	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	2,53E1	0E0	0E0						
Materials for energy rec	kg	0E0	0E0	0E0	0E0	0E0	5,68E0	MND	0E0	0E0	0E0	0E0	0E0						
Exported energy	MJ	0E0	0E0	0E0	0E0	0E0	0E0	MND	0E0	0E0	0E0	0E0	0E0						

ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG	kg CO2e	9,56E1	4,26E0	2,23E1	1,22E2	2,21E0	1,37E-1	MND	0E0	1,97E-1	4,9E-1	3,8E0	-2,76E1						

8) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013) This indicator Is almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

Scenario parameter	Value
Electricity data source and quality	Electricity, Estonia, residual mix, LCA study for country specific electricity mixes based on IEA, OneClickLCA 2021, year 2019
Electricity CO ₂ e / kWh	0,79
District heating data source and quality	Heat production, natural gas, at boiler condensing modulating >100kw (Reference product: heat, district or industrial, natural gas), Europe, Ecoinvent 3.6, year 2019
District heating CO2e / kWh	0,2181

BIBLIOGRAPHY

ISO 14025:2010 Environmental labels and declarations – Type III environmental declarations. Principles and procedures.

ISO 14040:2006 Environmental management. Life cycle assessment. Principles and frameworks.

ISO 14044:2006 Environmental management. Life cycle assessment. Requirements and guidelines.

Ecoinvent database v3.6 (2019) and One Click LCA database.

EN 15804:2012+A2:2019 Sustainability in construction works – Environmental product declarations – Core rules for the product category of construction products.

Int'I EPD System PCR 2019:14 Construction products, version 1.2.3 (08.07.2022)

EPD. General Programme Instructions of the international EPD^{\circledast} system. Version 4.0

Steel profile door LCA background report 05.09.2022

sakumetall

ABOUT THE MANUFACTURER

Saku Metall Uksetehas designs, develops, manufactures and sells metal doors Providing secure and durable door solutions since 1991.

Saku Metall Uksetehas has a large variety of steel doors to fit any technical requirement - up to RC4 in security class, up to El120 in fire resistance class and up to 45 dB in sound insulation. One of the key strengths is the ability to offer both large quantities and custom solutions. The manufacturer takes a personal approach towards every project to find the best solution together with the customer.

The product range consists of solid steel doors, steel profile doors, steel profile walls, steel profile facades, sliding doors, sectional & high-speed roller doors, steel hatches and special doors.

Additionally, Saku Metall Uksetehas sells locks, carrier systems for sliding doors, and automatic door opening and closing devices and other door accessories. Maintenance and repair services are available in domestic and Finnish markets.

Saku Metall Uksetehas is a part of Saku Metall Group and is 100% Estonian-owned. Saku Metall Uksethas has a subsidiary located in Finland – Saku Metall OY.

EPD AUTHOR AND CONTRIBUTORS

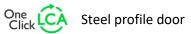
Manufacturer	Saku Metall Uksetehas AS							
EPD author	Janno Jegers, Saku Metall AS							
EPD verifier	Silvia Vilčeková, Silcert, s.r.o							
EPD program operator	The International EPD System							
Background data	This EPD is based on Ecoinvent 3.6 (cut-off) and One Click LCA databases.							
LCA software	The LCA and EPD have been created using One Click LCA Pre-Verified EPD Generator for Construction products							

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with EN 15804, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The background report (project report) for this EPD


Why does verification transparency matter? Read more online.

VERIFICATION OVERVIEW

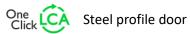
Following independent third party has verified this specific EPD:

EPD verification information	Answer
Independent EPD verifier	Silvia Vilčeková, Silcert, s.r.o
EPD verification started on	2022-09-12
EPD verification completed on	2022-10-07
Supply-chain specific data %	>95
Approver of the EPD verifier	The International EPD System

Author & tool verification	Answer						
EPD author	Janno Jegers, Saku Metall AS						
EPD author training completion	2021-11-21						
EPD Generator module	Construction products						
Independent software verifier	Ugo Pretato, Studio Fieschi & soci Srl.						
Software verification date	2021-05-11						

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of


- the data collected and used in the LCA calculations,
- the way the LCA-based calculations have been carried out,
- the presentation of environmental data in the EPD, and
- other additional environmental information, as present

with respect to the procedural and methodological requirements in ISO 14025:2010 and EN 15804:2012+A2:2019.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

VERIFICATION AND REGISTRATION (ENVIRONDEC)

ISO standard ISO 21930 and Category Rules (PCR)	CEN standard EN 15804 serves as the core Product
PCR	PCR 2019:14 Construction products, version 1.11
PCR review was conducted by:	The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.
Independent third-party verification of the declaration and data, according to ISO 14025:2006:	Independent verification of this EPD and data, according to ISO 14025: □ Internal certification ☑ External verification
Third party verifier	Silvia Vilčeková, Silcert, s.r.o
	Approved by: The International EPD [®] System Technical Committee, supported by the Secretariat
Procedure for follow-up during EPD validity involves third party verifier	□yes ☑no

THE INTERNATIONAL EPD® SYSTEM

EPD International AB, Box 210 60, SE-100 31 Stockholm, Sweden, E-mail: info@environdec.com

ANNEX 1 : ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C 4	D
Global Warming Pot.	kg CO₂e	9,28E1	4,22E0	2,18E1	1,19E2	2,19E0	1,34E-1	MND	MND	MND	MND	MND	MND	MND	0E0	1,95E-1	4,82E-1	3,8E0	-2,66E1
Ozone depletion Pot.	kg CFC-11e	6,81E-6	7,84E-7	2,41E-6	1E-5	3,82E-7	1,17E-8	MND	MND	MND	MND	MND	MND	MND	0E0	3,68E-8	6,15E-8	5,01E-8	-1,3E-6
Acidification	kg SO₂e	5,75E-1	8,79E-3	9,29E-2	6,77E-1	2,36E-2	3,43E-4	MND	MND	MND	MND	MND	MND	MND	0E0	4,01E-4	4,37E-3	9,37E-4	-1,08E-1
Eutrophication	kg PO₄³e	1,89E-1	1,76E-3	1,5E-2	2,06E-1	2,92E-3	2,94E-4	MND	MND	MND	MND	MND	MND	MND	0E0	8,09E-5	1,47E-3	4,11E-4	-6,36E-2
POCP ("smog")	kg C₂H₄e	3,6E-2	6,02E-4	5E-3	4,16E-2	7,19E-4	2,34E-5	MND	MND	MND	MND	MND	MND	MND	0E0	2,54E-5	1,68E-4	4,51E-5	-1,47E-2
ADP-elements	kg Sbe	4,35E-2	6,63E-5	3,72E-5	4,36E-2	4,35E-5	1,5E-6	MND	MND	MND	MND	MND	MND	MND	0E0	3,36E-6	2,57E-5	2,27E-6	-6,29E-4
ADP-fossil	MJ	1,17E3	6,52E1	3,62E2	1,59E3	3,15E1	1,77E0	MND	MND	MND	MND	MND	MND	MND	0E0	3,06E0	6,99E0	4,3E0	-2,57E2

