Environmental Product Declaration (EPD) Steel Slang In conformity with ISO 14025 and EN 15804:2012+A2:2019

GO GERDAU CORSA

Program: The International EPD® System- www.environdec.com	Program operator: EPD International AB	EPD registration number: S-P-08532	Validity date: 2028-07-26
EPD registered through the fully aligned regional programme/	Regional Hub:	Issue date:	Geographical scope
hub: EPD Latin America Hub, www.epd-latinamerica.com	Latin America Hub of the International EPD® System	2023-07-27	México

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at *www.environdec.com*

THE INTERNATIONAL EPD® SYSTEM

ENVIRONMENTAL PRODUCT DECLARATION

Content

GERDAU

General information

Product Description

Content Declaration

LCA Rules

Certifications

This EPD was prepared in conformity with the international standard ISO 14025 and EN 15804:2012+A2:2019 Sustainability of Construction Works; for the co-product steel slang manufactured from steel billet.

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPD of construction products may not be comparable if they do not comply with the Product Category Rules (PCR) "Construction Product" and the EN 15804:2012+A2:2019 Sustainability of Construction Works – Environmental Product Declarations - Core rules for Central Product Classification: UN CPC 4124 Bars and rods, hot rolled, of iron or steel; Environmental product declarations within the same product category but from different programs may not be comparable.

1. GERDAU

1.1 GERDAU CORSA

Gerdau is a major producer of long steel in the Americas, and one of the world's largest suppliers of special steel. We operate in 10 countries and employ 30,000 individuals.

4 Environmental Product Declaration

The trajectory of GERDAU began in 1901 with a factory in Porto Alegre, Brazil. Today, GERDAU products are present in the daily lives of millions of people.

We are also one of the largest recyclers in the world. Each year, we transform millions of tons of scrap into steel that is used to shape the future. Gerdau is a publicly traded company listed on the New York, São Paulo and Madrid stock exchanges.

Gerdau Arrived in Mexico in 2007 with the acquisition of a billet plant, in 2008 Gerdau and Aceros Corsa create a joint venture with Aceros Corsa's merchant bar plant, and in 2012, Gerdau and Aceros Corsa unify the brand in Mexico under Gerdau Corsa name.

In 2015, Gerdau Corsa starts production in the new structural shapes plant located in Sahagun city, Hidalgo, Mexico.

GERDAU CORSA provides quality products and offers value-added services such as custom length cuts for optimized building structure fabrication.

Our network of steel mills covers the United States, Venezuela, Colombia, Argentina, Perú, Uruguay, Brasil, Republica Dominicana, Canada, and Mexico. We offer made to order Steel grades and lengths.

We have a technical team focused on the customer needs and able to offer the right solution for your building steel structure.

We believe in the strength of Steel transformation, and from the beginning of our history, the Main goal has always been to transform the lives of the people around us. Steel can turn projects into reality and boost the development of a better society and a better place to live.

Our Purpose is to: Empower people who build the future.

The men and women in the steel industry make a transformative impact on society. They create and build with steel. They connect the world through bridges and cars, move people on elevators and across railroads, construct homes that protect families, and erect structures that revitalize landscapes. At Gerdau Corsa, we empower people who build the future.

This Environmental Product Declaration (EPD) is in accordance with ISO 14025, for the co-product steel slag.

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPD of construction products may not be comparable if they do not comply with EN 15804 Sustainability of Construction Works – Environmental Product Declarations – Core rules for Central Product Classification: UN CPC 4124 bars; Environmental product declarations within the same product category but from different programs may not be comparable.

2. GENERAL INFORMATION

PRODUCT:	
Declaration owner:	Gerdau Corsa, S.A. de C.V. Kilómetro 3 carretera México - Ciudad Sahagún S Hidalgo - México CP 43990 Contact person: Itzia Nallely Santillán Fierro Itzia.santillan@gerdau.com Cel: 5515039744
Description of the construction product:	Gerdau produces steel billet manufactured from s the construction of hydraulic bases and other app
Declared Unit:	1000 Kg of steel slag was obtained from the mar
Constrution product identification	Central Product Classification: CPC 4124 Bars and
Life cycle stages not considered:	100% Steel billet manufactured using steel scrap.
Life cycle stages not considered:	Downstream (A4, A5, B1, B2, B3, B4, B5, B6, B7,
For more information consult:	This environmental product declaration is based of the stage of input materials used for the generation Definition of the product. S Content declaration. E Declared unit.
Comparability of EPD of construction products	a. EPD of construction products may not be b. Environmental product declarations withi
For more information consult:	https://www.gerdaucorsa.com.mx/
Site for which this EPD is representative:	Manufacturing Plant: Gerdau Corsa, S.A. de C.V. Km 3 carretera México - Ciudad Sahagún, Zona In
Intended Public:	B2B (Business to Business)

STEEL SLAG MANUFACTURED FROM STEEL SCRAP

S/N

steel scrap, during this process a co-product is obtained that corresponds to steel slag. Their application is generally in pplications of the sector.

anufacture of steel billets from steel scrap by GERDAU CORSA at the Ciudad Sahagún plant.

nd rods, hot rolled, of iron or steel

7, C1, C2, C3, C4, D), and the reference service life (RSL).

I on information modules that do not cover aspects of construction stage and use. It contains detailed information on ation of raw material and central process, modules A1, A2, A3.

- System boundary.
- Environmental performance.
- Evidence and verifications.

e comparable if they do not comply with EN 15804:2012+A2:2019.

hin the same product category from different programs may not be comparable

Industrial Tepeapulco, Hidalgo, CP 43990, México.

3. PRODUCT DESCRIPTION

3.1 STEEL SLAG

Waste that we transform into wealth.

The co-products are those residues that have a high potential for reuse and that are no longer subjected to any type of process or internal treatment.

Through them, we offer alternatives that benefit the environment, such as the reuse and reduction of waste generated by the production of steel, as well as the implementation of alternatives focused on the recycling of co-products to incorporate them into a new Lifecycle. Thanks to this they can be used in construction, paving, the cement industry, etc.

Co-products

The use of co-products guarantees you great advantages in projects. They reduce the consumption of natural resources by substituting and minimizing raw materials. They reduce the emissions of compounds and greenhouse gases (CyGHEI). On the other hand, its cost is lower compared to that of traditional materials.

We divide co-products into two types: process-generated and service-generated. The first are slag, scale, and dust from steel foundry. The second, is refractories, cardboard, wood, PET, aluminium, and copper, among others.

Steel Slang

The slag processed from the electric arc furnace is the co-product that is most generated in the production of steel, it has different uses and applications in the construction industry, such as paving, hydraulic base, railway ballast, aggregates, material cementing agent, among others, since we are constantly developing new ways of taking advantage of it. (GERDAU CORSA, 2022)

For more information on the technical specifications required, please consult the official GERDAU CORSA website https://www.gerdaucorsa.com.mx. or francisco.angeles@gerdau.com, you can also contact Facebook / Instagram / and Linkedin.

4. CONTENT DECLARATION

Gerdau is a major producer of long steel in the Americas, and one of the The co-product steel slang manufactured from steel billet is produced in an electric arc furnace with in Table 1. The total raw materials that make up the product were not declared, only the materials with a more representative percentage that make up the steel slang.

The typical composition of steel slag is found in Table 1.

4.1 Recycled material content

The steel billet from which Gerdau Corsa generates steel slag is manufactured from 96% ferrous scrap.

4.2 Distribution packaging

The co-product is sent to the customers in no packaging.

(i) Table 1. Content commercial steel slag

Homogeneous Ma- terial or Chemical Substances	Chemical Subs- tances	Weight (%)	CAS Num- ber	Function of Chemical Substance	Health class
Steel scrap	Not applicable	96 %	Not applica- ble	Iron content in steel	Not listed
Anthracite	Anthracite	<1%	8029-10-5	Carbon content in steel	Not listed
Anthracite M6-20	Anthracite	1%	8029-10-5	Carbon content in steel	Not listed
Lime	Calcium carbonate	<1%	471-34-1	lron ore sintering agent steel foundry	Not listed
Lime	Calcium carbonate	1%	471-34-1	Iron ore sintering agent steel foundry	Not listed
Hard Coal	Anthracite	<1%	8029-10-5	Carbon content in steel	Not listed
Lime	Calcium carbonate	<1%	471-34-1	Iron ore sintering agent steel foundry	Not listed
Dolomite	Calcium carbonate magnesium	<1%	16389-88-1	Iron ore sintering agent steel foundry	Not listed

1 Conformity to EN15804 declaration of material content of the product shall List of substances of Very High Concern (SVHC) that are listed by European Chemical Agency.

Other components of minimal quantities and that are not part of the composition of the product but that are necessary for its manufacture were not placed in Table 1, but it was confirmed that these were not found in ECA.

According to EN15804+A2:2019 declaration of material content of the product shall List of Substances of Very High Concern (SVHC) that are listed by European Chemicals Agency.

Environmental potential impacts were calculated conformity to EN 15804:2012+A2:2019 sustainability of construction works and PCR 2019:14 Construction products Version 1.11 UN CPC 4124 bars and rods, hot rolled, of iron or steel. This EPD is in accordance with ISO 14025:2006.

Environmental potential impacts were calculated through Life Cycle Assessment (LCA) methodology conformity to ISO 14040:2006 and ISO 14044:2006. An external third-party veri-fication process of the EPD was conducted according to General Programme Instructions for the International EPD® System Version 4.0. Verifi-cation includes a documental review and a validation of both the underlying LCA study and documents describing additional environmental information that justify data provided in the EPD.

5.1 Declared unit

1000 Kg of steel slag was obtained from the manufacture of steel billets from steel scrap by GERDAU CORSA at the Ciudad Sahagún plant.

5.2 System boundary

The potential environmental impacts were calculated through (LCA) methodology for steel slag, manufactured from steel billet according to ISO 14040:2006 and ISO 14044:2006. This study went through a critical review process in accordance with ISO / TS 14071: 2014.

According to EN 15804 section 5.2 the following type of EPD is "cradle to gate". This EPD is based on information upstream processes and core processes, modules A1 to A3, and il was not possible to include approximations of scenarios C1, C2, C3, C4, and D based on construction sector statistics in Mexico.

Does not include A4-A5 Construction stage and B Usage stage.

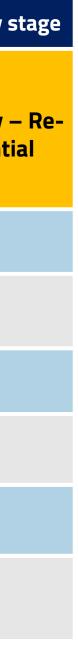
Although the table 2, indicates the inclusion of modules C and D, for the present EPD, they were not considered since in this case a co-product resulting from a primary process such as billet manufacturing is being analyzed. The slag is a waste that has a high potential for reuse and recovery, which is also not subjected to additional internal processes or treatment, for sale, used in the market in construction projects such as bases for pavements, hydraulic bases, railway ballast, aggregates, cementing material, leaving the material incorporated for an indefinite period without the possibility of being separated, for specific processing at its end of life, that is to say, that the end of life of the material is in any of the mentioned uses, clarifying that these bases construction works are not removed in time but are repaired and superficial layers where the slag is not incorporated are removed.



		EPD TYPE						
Life cycle stages in the inter- national EPD- System	Asset life cycle stages	From cradle to gate with modules C1-C4, module D as optional modules	-	From cradle to grave and module D		tion services: Cradle to doo A1-A5 and optional module		
	A1) Raw material supply							
A1-A3) Product stage	A2) Transport	Mandatory	Mandatory	Mandator	ſy	Mandatory		
	A3) Manufacturing							
A4-A5) Construction	A4) Transport		Optional for goods Manda-					
process stage	A5) Construction installation	-	tory for services	Mandatory		Mandatory		
	B1) Use			Mandatory				
	B2) Maintenance					Mandatory		
	B3) Repair							
B Use stage	B4) Replacement	-	Optional					
	B5) Refurbishment							
	B6) Operational energy use							
	B7) Operational water use							
	C1) Deconstruction, demolition							
	C2) Transport							
C End of life stage	C3) Waste processing	Mandatory	Mandatory	Mandator	с у	Optional		
	C4) Disposal							
D Recovery stage	Inclusion of reference useful life	Mandatory	Mandatory	Mandator	Mandatory			
Declared unit	Inclusion of reference useful life	Optional	Mandatory	Mandator	γ	-		

(i) Table 2. System boundary steel slag

Description of the modules included in this EPD.


	Р	roduct stage	e		tion process hase	Usage stage			End of life stage				Resource recovery st			
	Raw mate- rial supply	Transport	Manufactu- ring	Trans- port	Construc- tion facility	Use	Mainte- nance	Repair	Restora- tion	Operational energy use	nal use of	Demolition/ De- construction	Transport	Waste pro- cessing	Disposal	Reuse – Recovery – cycling - potentia
Module	A1	A2	Аз	A4	A5	B1	B2	B4	B5	B6	B7	С1	C2	C3	C4	D
Declared modules	X	x	x	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Geography	МХ	МХ	МХ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Specific data used		>99%		-	-	-	-	-	-	-	-	-	-	-	-	-
Product variation		ND		-	-	-	-	-	-	-	-	-	-	-	-	-
Site variation		ND		-	-	-	-	-	-	-	-	-	-	-	-	-

X = Declared module; ND = No declared module; MX= México

(i) Table 3. Description of the modules included in this EPD.

5.3 Description of information modules is included in Table 4.

A1) Raw materials supply	A2) Transportation	A3) Manufacturing
 Pre-processing of steel scrap. Production of raw materials: ferroalloys, lime, carbon, graphite electrodes, etc. Production of packaging materials for raw materials. Generation and distribution of the electricity consumed in manufacturing. Generation and distribution of the natural gas consumed in manufacturing. 	 Transportation of other raw materials. Transportation of packaging materials for raw materials. Transportation of packaging materials for commercial steel slag. 	 Waste generation and waste management processes.

5.4 Description of the manufacturing process

The manufacturing process is described in Figure 1:

5. LCA Rules

5.5 Assumptions

The following are the assumptions related to the industrialization process of scrap metal:

The steel scrap from Hidalgo, Queretaro, State of Mexico and Guanajuato, is treated in the los Reyes scrap collection center State of Mexico, grouping the raw material sources by geographical area.

The steel scrap of Vera Puebla, Tlaxcala and Ta co own are collected treated in the Veracru llection center.

The steel scrap data from Nuevo Leon was ruled out since it is not a constant supplier and the quantities that I handle are not representative.

Gerdau Corsa provided the scrap consumption data from January to August, and the total amount of scrap consumption in 2021. With this information a correlation for the missing months data was created.

ac	ruz,	
at	oas-	
1	and	
ΙZ	C0-	

The Sahagún plant collection center receives steel from the other collection centers the treated of collection Centre others, the untreated material that arrives directly and GER-DAU CORSA production returns steel exclusively.

The steel scrap from Jalisco is being collected and treated in the yard Guadalajara collection center.

The steel scrap of Morelos is being collected and treated in the San Juan collection center.

The distance from the collection center to the plant consumption was done using an average of the distances covered regarding each geographical area. The following assumptions regard the life cycle inventory for the structural shapes:

The shipment of non-hazardous waste take place at 34 km from the plant.

The direct emissions were calculated using the factors for natural gas emissions.

5. LCA Rules

5.6 Cut-off criteria

The PCR document establishes that a minimum of 95% of the total flows (matter and energy) in modules A1, A2 and A3 must be included in the ICV (PCR 2019:14 V1.11 Construction Products, 2021). In order to include the relevant data, the minimum established by the RPC was met, leaving outside the scope of this study, the company's infrastructure, activities related to the transportation of employees, administrative activities carried out by employees, elements of personal protection used by workers, as well as the supplies used for corrective and preventive maintenance, such as rags, tow and grease, taking this type of material out of inventories that after use can become hazardous waste as they are impregnated with chemical substances .

5.7 Allocation

In this study, allocation procedures were applied for co-products generated during the industrialization and entry of scrap into the billet manufacturing process, which is shown in the table below:

Co-Product	Quantity Unit		Assignment	
Waste of usable ferrous material	2.141814579	kg	0.21%	
Scrap	1000	kg	99.8%	
Total	1002.141815	kg	100%	

5.8 Time representativeness

Direct data obtained from GERDAU CORSA is representative for 2021

(i) Table 5. Scrap allowances.

Co-product	Quantity	Unit	Assignment		
Manufactured billet	712271000.0	kg	87.29%		
Slag	103708530.0	t	12.7%		
Total	815979530.0	kg	100.00%		

(i) TTable 6. Coproduct generated in the manufacturing steel slag

6. ENVIRONMENTAL PERFORMANCE

SimaPro 9.3.0.3 was used for LCA, the impact categories were calculated under the EN 15804:2012+A2:2019 Method V1.02 / EF 3.0 normalization and weighting set (PRé-Sustainability, 2021) implemented in the SimaPro 9.3.0.3 software. The results of the environmental impact assessment are presented for the basic and additional environmental impact categories obtained through the EN 15804:2012+A2:2019 Method V1.02 / EF 3.0 normalization and weighting set (PRé-Sustainability, 2021) implemented in the data base Ecoinvent 3.8.

6.1 Use of resources

Parameters describing resource use were evaluated with the Cumulated Energy Demand method version 1.09 (Frischknecht et al. 2007) except for the indicator of use of net fresh water that was evaluated with Recipe 2016 Midpoint (H) version 1.00 (Huijbregts et al. 2017). The detailed description of the use of resources is provided in Table 7.

Parameters that de

Use of renewable renewable primar as raw materials
Use of renewable materials
Total use of renev sources
Use of non-renew cluding non-renew sources used as ra
Use of non-renew as raw materials
Total use of non-re resources
Use of secondary

Use of renewable

Use of non-renev

Use of net fresh

EPD® LATIN AMERICA

lescribe the use of resources	Unit	A1) Raw ma- terials supply	A2) Transport	A3) Manufac- turing	Total, Mod A1 – A3	Mód A4 - D
e primary energy excluding ary energy resources used	MJ	2.52E-02	1.32E-03	2.62E-02	5.27E-02	
le primary energy as raw	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ewable primary energy re-	MJ	2.52E-02	1.32E-03	2.62E-02	5.27E-02	
ewable primary energy ex- ewable primary energy re- raw materials	MJ	1.27E+00	1.22E-01	1.87E-01	1.58E+00	
wable primary energy used	MJ	3.26E-02	0	0	3.26E-02	MND
-renewable primary energy	MJ	1.27E+00	1.22E-01	1.87E-01	1.58E+00	
y material	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
e secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
wable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
water	m³	9.03E-05	1.32E-05	3.96E-04	4.99E-04	

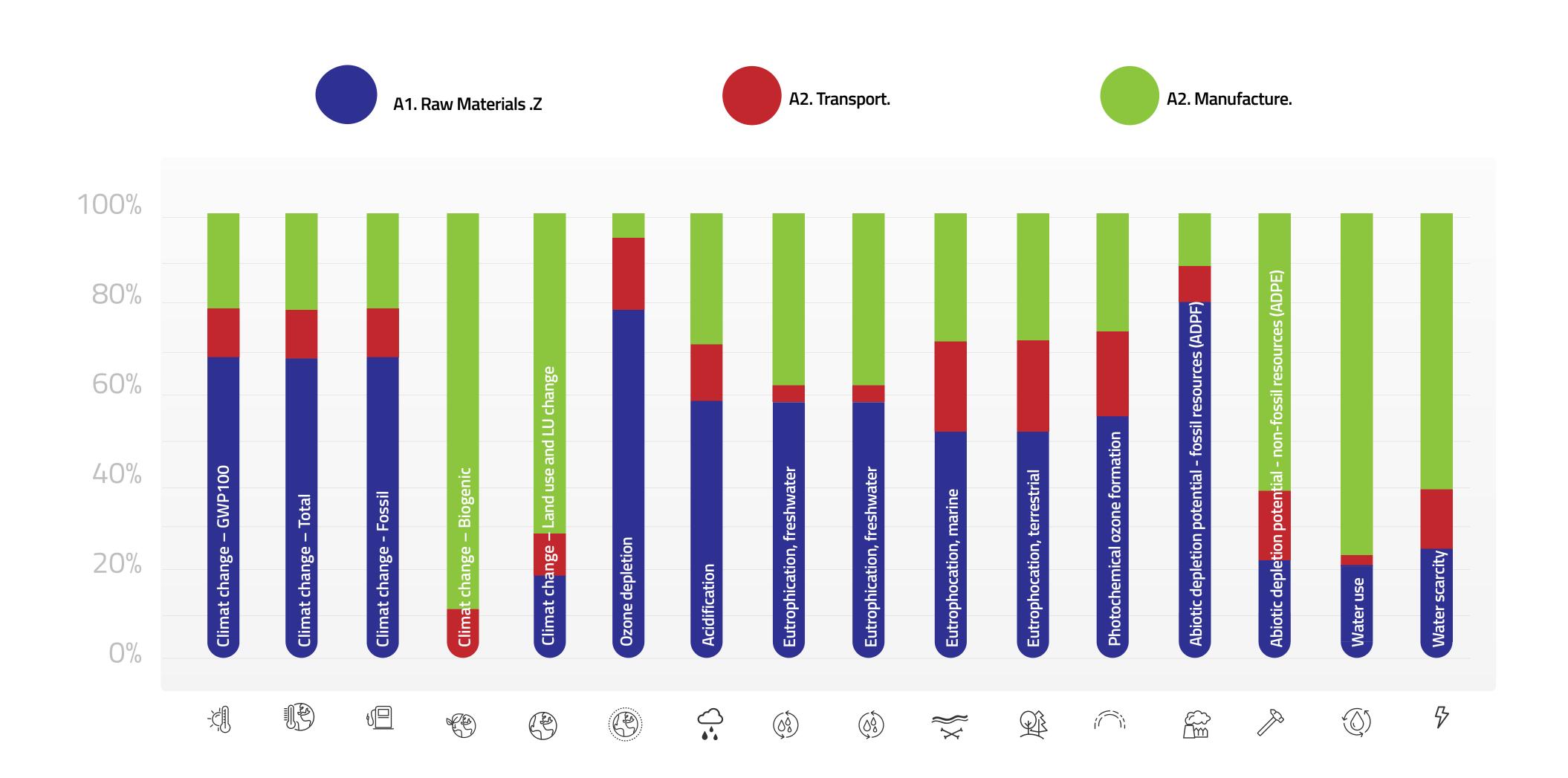
(i) Table 7. Resource Indicators per metric ton of steel slag

6. ENVIRONMENTAL PERFORMANCE

6.2 Potential environmental impact

All information modules are reported and valued separately. However, this EPD presents itself as the total impact across all stages A1-A3.

Table 8 describes the basic environmental impact categories calculated with the EN 15804:2012+A2:2019 Method V1.02 / EF 3.0 normalization and weighting set (PRé-Sustainability, 2021). It should be noted that emissions greater than 100 years were eliminated.


LATIN AMERICA EPD®

Impact basic category	Unit	A1) Raw materials	A2) Transporta- tion	A3) Manufac- ture	Total
	kg CO2-eq	4,67E-02	7,47E-03	1,49E-02	6,91E-02
Cambio climático- GWP100	%	68%	11%	22%	100%
	kg CO2 eq	4,77E-02	7,54E-03	1,53E-02	7,06E-02
Cambio climático - total	%	68%	11%	22%	100%
	kg CO2 eq	4,77E-02	7,54E-03	1,52E-02	7,05E-02
Climate change - Fossil	%	68%	11%	22%	100%
	kg CO2 eq	-2,43E-05	4,14E-06	5,63E-05	3,62E-05
Climate change - Biogenic	%	-67%	11%	156%	100%
Climate change - Land use and LU	kg CO2 eq	6,27E-06	3,21E-06	2,41E-05	3,36E-05
change	%	19%	10%	72%	100%
One se destation	kg CFC11 eq	8,17E-09	1,69E-09	5,74E-10	1,04E-08
Ozone depletion	%	78%	16%	6%	100%
	mol H+ eq	1,89E-04	4,07E-05	9,60E-05	3,26E-04
Acidification	%	58%	13%	29%	100%
Eutrophication frachurator	kg P eq	1,04E-05	5,74E-07	6,97E-06	1,80E-05
Eutrophication, freshwater	%	58%	3%	39%	100%
Futraphication frachwater 2	kg PO4 eq	3,20E-05	1,76E-06	2,14E-05	5,51E-05
Eutrophication, freshwater 2	%	58%	3%	39%	100%
Eutrophication marine	kg N eq	3,45E-05	1,37E-05	1,94E-05	6,76E-05
Eutrophication, marine	%	51%	20%	29%	100%
Eutrophication torractrial	mol N eq	3,58E-04	1,50E-04	2,04E-04	7,12E-04
Eutrophication, terrestrial	%	50%	21%	29%	100%
Photochemical ozone formation	kg NMVOC eq	1,20E-04	4,25E-05	5,89E-05	2,21E-04
Photochemical ozone formation	%	54%	19%	27%	100%
Abiotic depletion potential - fossil	MJ	1,17E+00	1,15E-01	1,76E-01	1,46E+00
resources (ADPF)	%	80%	8%	12%	100%
Abiotic depletion potential - non-fos-	kg Sb eq	3,64E-08	2,58E-08	1,02E-07	1,64E-07
sil resources (ADPE)	%	22%	16%	62%	100%
Matoruco	m3 depriv.	3,84E-03	4,02E-04	1,38E-02	1,81E-02
Water use	%	21%	2%	77%	100%
Mator scarcity	m3 H2O eq	1,79E-03	1,04E-03	4,54E-03	7,37E-03
Water scarcity	%	24%	14%	62%	100%

6. ENVIRONMENTAL PERFORMANCE

6. ENVIRONMENTAL PERFORMANCE

6.3 Waste production

Environmental indicators describing waste generation were obtained from LCI except for background information which has been calculated using EDIP 2003 method (Hauschild and Potting, 2005). Table 9 shows waste and other outputs generated during each information module.

Output parameter	Unit	1) Raw materials supply	A2) Trans- portation	A3) Manufac- turing	Total, modu- les A1 - A3	Modules A4 -D
Hazardous waste	kg	1.57E-06	2.94E-07	1.15E-07	1.98E-06	
Non hazardous waste	kg	4.34E-03	5.53E-03	9.36E-03	1.92E-02	
Radioactive waste*	kg	2.96E-06	7.51E-07	4.54E-07	4.16E-06	
Components for reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Exported electricity	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Exported heat	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

Table 9. Waste and other outputs per metric ton of steel slag

6.4 Additional environmental information

Our Purpose in Gerdau Corsa is to Empower people who build the future.

The men and women in the steel industry make a transformative impact on society. They create and build We are truly committed to our planet and all of us living in it and that is what makes us special. with steel.

They connect the world through bridges and cars, move people on elevators and across railroads, construct homes that protect families, and erect structures that revitalize landscapes. At Gerdau Corsa, we empower people who build the future.

We believe that thorough empowering people we can achieve continuous improvement in our processes and communities, this is key in order to make a better workplace, society and planet; our philosophy is based _rst of all on people, the environment and the quality of our products, this is why all our plants are ISO certi_ed in management systems regarding health and safety, environment, and quality (ISO 45001:2018, ISO 14001:2015, ISO 9001:20115 accordingly).

Our passion comes from the people we employ and collaborate within the industry; while investing in the latest technologies that take care of our environment.

All of our mills have modern dust removal systems that capture particles generated in the steel production process. This _Itered material is a co-product used by other industries.

Our co-products - which are the secondary materials produced during steel production - can be used in numerous industrial applications, such as road paving, railway ballasts, foundries, cement manufacturing and ceramics. Gerdau reuses 73% of its co-products globally and donate the remaining co-products to help municipalities improve the roads in areas near our operations.

We also rely on water to cool production equipment and steel products. To conserve this water, Gerdau Corsa uses a closed-loop system that allows this valuable resource to be treated and reused. This process optimizes and substantially reduces water consumption.

Through new technology and awareness, our water intake is decreasing. Today, the company reuses almost 97% of its industrial process water.

7. VERIFICATION AND REGISTRATION

		CEN STANDARD EN			
	Programme	EPD [®] International EPD® System <u>www.environdec.com</u> EPD registered through the fully alig EPD Latin Americ			
	Programme operator	EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden EPD Latin America Chile: Alonso de Ercilla 2996, Ñuñoa, Santiago Chile. Mexico: Bosques De Bohemia 2 No. 9, Bosques del Lago. Cuautitlan Izcalli, Estado de México, México			
_	EPD registration number:	S-P-08532			
	Date of validity:	2028-07-26			
	Date of publication (issue):	2023-07-27			
	Reference year of data:	2021			
	Geographical scope:	Mexico			
	Production Plant:	Km 3 carretera México - Ciudad Sahagún, Zona Industrial T			
	Central product classification:	UN CPC 4124 Bars and rods, hot rolled, of iron or steel			
	PCR:	PCR 2019:2014 V 1.11 Construction products			
ŝ	PCR review was conducted by:	Martin Erlandsson, IVL Swedish Environmental Research Ir			
	Independent verification of the declaration data, ac- cording to ISO 14025:2006	EPD process certification (Internal)			
	Third-party verifier: Approved by:	Dr. Ruben Carnerero Acosta Approved EPD verifier r.carnerero@ik-ingenieria.com The International EPD® System			
	Procedure for follow-up of	Yes			
	data during EPD validity				
	involves third-party veri-fier:	X No			

N 15804 SERVED AS THE CORE PCR

ligned regional programme/hub: rica www.epdlatinamerica.com

l Tepeapulco, Hidalgo, CP 43990, México

Institute, martin.erlandsson@ivl.se

8. CERTIFICATIONS

The company has following certifications:

CALIDAD

AMBIENTE

C,

9. CONTACT INFORMATION

10. REFERENCIAS

Boulay AM, Bare J, BeniniL, Berger M, Lathuillière MJ, Manzardo A, Margni M, Mo toshita M, Núñez M, Valerie-Pastor A, Ridoutt B, Oki T, Worbe S, P¬ster S (2018) Th WULCA consensus characterization model for water scarcity footprints: assessin impacts of water consumption based on available water remaining (AWARE). Th International Journal of Life Cycle Assessment. Volume 23, Issue 2, pp 368–378 https://doi.org/10.1007/s11367-017-1333-8.

EN 15804:2012+A1:2013 (Sustainability of construction works - Environment product declarations - Core rules for the product category of construction products EPD International (2017) Construction products and construction services. 2012:0 Version 2.2 2017-05-30. www.environdec.com.

EPD International (2017) General Programme Instructions for the Internation EPD® System. Version 3.0, dated 2017-12-11. www.environdec.com.

Frischknecht R, Jungbluth N, Althaus HJ, Bauer C, Doka G, Dones R, Hischier R, He Ilweg S, Humbert S, Köllner T, Loerincik Y, Margni M, Nemecek T (2007) Implement tation of Life Cycle Impact Assessment Methods Data v2.0. ecoinvent report No. Swiss Centre for Life Cycle Inventories, Dübendorf.

Guinee JB, Marieke G, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener S, Su S,Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2001). Handbook on Li Cycle Assessment, Operational guide to the ISO standards Volume 1, 2a, 2b and Springer Netherlands. DOI 10.1007/0-306-48055-7. Series ISSN 1389-6970

Hauschild M, Potting J (2005) Spatial differentiation in Life Cycle impact assessment - The EDIP2003 methodology. Institute for Product Development Technic University of Denmark.

Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp N Hollander A, van Zelm R. ReCiPe2016: a harmonised life cycle impact assessme

Mo-	method at midpoint and endpoint level. International Journal on Life Cycle Assess-
The	ment Volume 22 Issue 2. pp 138-147. https://doi.org/10.1007/s11367-016-1246-y
ing	UN (2015) Central Product Classification (CPC) Version 2.1. Department of Econo-
The	mic and Social Affairs. Statistics Division. United Nations, New York.
78.	Luque Rodriguez Claudia, (2019). Life Cycle Assessment (LCA) methodology of steel
	slag manufactured from steel scrap. México
ntal	Wegener AS, van Oers L, Guinée JB, Struijs J, Huijbregts MAJ (2008) Normalisation
ts).	in product life cycle assessment: An LCA of the global and European economic sys-
:01	tems in the year 2000. Science of The Total Environment. Volume 390, Issue 1. Pa- ges 227-240. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2007.09.040.
nal	
He-	
en-	
. 3.	
Suh	
Life	
d 3.	
SS-	
ical	
M ,	
ent	

