

HIGH PRESSURE AND SOLID GRADE LAMINATES

EPD Owner: See Group.

supporting ethical enterprise

ecoact

See Ltd

www.seegroupholdings.com

EcoAct Ltd

www.eco-act.com

Programme: The International EPD® System

www.environdec.com

Programme Operator: EPD International AB

EPD Registration Number: S-P-02470

Scope: Global

Prepared by:

Issue Date: 18/01/2021

Valid to: 17/01/2026

1. Programme information

Programme:

The International EPD® System
Address:
EPD International AB
Box 210 60
SE-100 31 Stockholm
Sweden
Website:
www.environdec.com
E-mail:
info@environdec.com
Info@environdec.com
ISO standard ISO 21930 and CEN standard EN 15804 serves as the core Product Category Rules (PCR)
Product category rules (PCR): PCR 2019:14 Construction products, version 1.1
PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact
Independent third-party verification of the declaration and data, according to ISO 14025:2006: ☑ External □ Internal
Covering
☐ EPD process certification ☐ EPD verification
Third party verifier: Chris Foster, EuGeos
Approved by: The International EPD® System
Procedure for follow-up of data during EPD validity involves third party verifier: ☐ Yes ☑ No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

2. General information

Name of the product

BioCarbon Laminates High Pressure Laminate and Solid Grade Laminate

Owner of the declaration

See Ltd, 26 Brunel Road, Earlstrees Industrial Estate Corby, Northants, NN17 4JW

Conductor of Life Cycle Assessment (LCA) and Environmental Product Declaration (EPD)

EcoAct UK

www.eco-act.com

Carbon Clear Limited trading as EcoAct

Registered Office: Unit A, 70-78 York Way, London N1 9AG

Product category rules

EN 15804:2012: Sustainability of construction works – Environmental product declaration – Core rules of the product category of construction products.

Date of publication and validity of EPD

Issue date: 18/01/2021 Valid to: 17/01/2026

Verification

The EPD is verified by an independent external party according to the EN 15804:2012+A2:2019 standard. The EPD is verified by Chris Foster, EuGeos.

3. Product description

Product Composition:

The BioCarbon Laminates range of High-Pressure Laminates (HPL) and Solid Grade Laminates (SGL) and are produced in thicknesses between 0.5mm - 25mm, and a wide range of sheet sizes to suit application requirements.

The laminate sheets compose of layers of kraft paper impregnated with phenolic resin and decorative papers on both sides that are impregnated with melamine resin.

Description of the product:

All HPL and SGL laminates conform to CE mark standards of health, safety and environment protection standards for construction products sold within the European Economic Area (EEA). In addition to this, the laminates are certified to ISO 14001 for Environmental Management Standards, are FSC® certified materials, and comply with BS FN 438 standards for laminate sheet materials.

Applications

HPL

The BioCarbon Laminates High Pressure Laminate (HPL) provides the security of Anti-Microbial protection for hygiene sensitive areas, and the performance properties to make them suitable for a wide range of applications such as Private and residential housing, Public buildings, Healthcare, Hospitality, Washrooms and lockers, Commercial interiors, Leisure facilities, Retail, and Educational, Railway Stations, Airport terminals and Industrial Buildings.

Suitable for vertical and horizontal such as Hospital Furniture, Office Furniture, IPS Panelling, Doors and Desktops etc.

SGL

The BioCarbon Laminates Solid Grade Laminate (SGL) provides the security of Anti-Microbial protection for hygiene sensitive areas, and the performance properties to make them suitable for a wide range of applications such Private and residential housing, Public buildings, Healthcare, Hospitality, Washrooms and Lockers, Commercial interiors, Leisure facilities, Retail, and Educational, Railway Stations, Airport terminals and Industrial buildings.

Fire Retardancy comes as standard to EN13501-1 and ASTM84.

Suitable for freestanding applications in vertical such as Cubicles and storage, Wall cladding, Railing, Infill panels, Column panels, as well as horizontal applications in Work Surfaces, Office Furniture, Ceilings, Windowsills and Counter Tops etc.

Main product components and materials

The EPD refers to four grades of BioCarbon Laminates HPL & SGL: 1mm, 6mm, 12.5mm and 20mm.

		Weight [k	g/m²] (% share of \	weight)		
	1mm	6mm	12.5mm	20mm	PC	RM
Kraft paper	0.92 (59.9%)	5.96 (67.5%)	12.60 (69.6%)	20.39 (70.4%)	0%	100%
Decorative paper	0.14 (9.2%)	0.28 (3.2%)	0.28 (1.6%)	0.28 (1.0%)	0%	100%
Melamine resin	0.11 (7.1%)	0.22 (2.5%)	0.22 (1.2%)	0.22 (0.8%)	0%	15%
Phenolic resin	0.36 (23.7%)	2.36 (26.8%)	5.00 (27.6%)	8.08 (27.9%)	0%	9%
Total	1.53	8.82	18.1	28.98		
			Packaging			
Mixed plastics	0.02	0.11	0.23	0.37	0%	0%
Pallet	0	0.01	0.01	0.02	0%	100%

^{*}Functional Unit: 1 m²

Specific contents of resins are not listed to protect proprietary information.

PC = post-consumer material weight-%

RM = Renewable material, weight-%

Manufacture

The manufacture of BioCarbon Laminates consists of multiple stages outlined in the process flow diagram below.

Firstly, phenolic and melamine resins are manufactured. Kraft paper sheets are then impregnated with a phenolic resin while decorative paper sheets are impregnated with a melamine resin. The laminate is formed by pressing a top layer of melamine impregnated decorative paper with several layers of phenolic impregnated kraft paper depending on thickness. The pressed laminate is then trimmed to size.

The production site is Lamitech, Bolivar Cartagena, Colombia.

Release of dangerous substances

The product has tested in accordance with UL 2821 test method to show compliance to emission limits on UL 2818 section 7.1 and 7.2. Concentration level of formaldehyde is very low, below the 7.3 ppb threshold.

The product has been GREENGUARD certified by UL Environment.

4. LCA calculation information

Functional unit/Declared unit

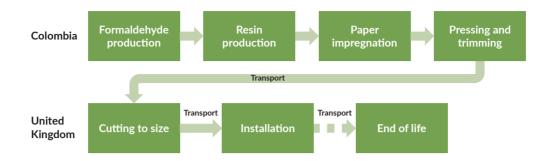
The declared unit is 1m² of BioCarbon Laminates.

Service life

As a permanent component of building or infrastructure, laminates are typically used until the construction itself is demolished or refurbished. The life of the product itself is likely 100 years as a minimum. Due to the nature of it being a construction and interior component the service life has been estimated to be on average 40 years.

System boundaries

This Environmental Product Declaration considers cradle to gate with options, modules C1-C4, and module D. The list of modules considered are detailed in the table below.


Pro	duct s	tage		ruction cess			U	se sta _i	ge				End-c	of-life		Benefits outside boundary
Raw materials supply	Transport	Manufacturing	Transport	Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Energy use	Water use	De-construction	Transport	Waste processing	Disposal	Reuse, recovery, recycling
A1	A2	АЗ	A4	A5	В1	В2	ВЗ	В4	B5	В6	В7	C1	C2	C3	C4	D
X	X	X	Χ	X	ND	ND	ND	ND	ND	ND	ND	X	Χ	X	X	X
GLO	GLO	CO/UK	UK	UK	-	-	-	-	-	-	-	UK	UK	UK	UK	CO/UK
	>90	% spec	cific data	1	-	-	-	-	-	-	-	-	-	-	-	-
Pro	duct v	ariatio	n not rel	evant	-	-	-	-	-	-	-	-	-	-	-	-
S	ite var	iation i	not relev	/ant	-	-	-	-	-	-	-	-	-	-	-	-

X = Included ND = Not Declared

As the product is a construction material, once it has been installed, no actions or operations are required to maintain the product during the use phase until the demolition of the construction. No operational energy or water use is required by the product.

Process Flow Diagram

System boundary

Cut-off rules

A cut-off criterion of 1% has been applied, however no specific exclusions have been made based on this.

Capital goods have been generally excluded from primary data collection but considered where included in applied background data.

Data quality

Specific data for BioCarbon Laminates has been collected as far as possible. Primary data has been collected from manufacturer of the laminate for 2019. Data has been scaled up to cover a one-year average.

Further processing data for the preparation of the product for installation and installation data was also collected, here most recent data, 7 months, for 2020 was collected and scaled up to a full 12-month period.

Background data

Ecoinvent 3.6 was used for all background data and was modelled using GaBi ts 9.5.

Estimates

Estimates have been made throughout the study where no specific data is available. These have been based on expert approximations to represent the material used or process out as accurately as possible.

Allocation

All allocation within the primary data has been done using mass allocation.

Comparability

The comparison of different EPD data is only possible where EN 15804 has been followed, the same building context and product-specific characteristics of performance are considered, and the same stages have been included in the system boundary. According to EN 15804, EPDs of construction products may not be comparable if they do not comply with this standard. According to ISO 21930, EPDs may not be comparable if they are from different EPD programmes.

5. LCA additional technical information

Product stage, A1-A3

The product stage of the laminate products is subdivided into three modules; A1- raw material supply, A2- transport, and A3- manufacturing.

A1 Raw material supply

This module accounts for the extraction and processing of all raw materials upstream of the laminate manufacturing process. In particular, it covers the supply of raw materials for the production of melamine and phenolic resin, and the supply of kraft and decorative paper that are used in the laminate manufacturing process.

A2 Transport to manufacturer

Transport of the raw material to the manufacturing facility are considered in this module. This includes transport by ship, train, and freight lorry. Mainly secondary data has been used for this process.

A3 Manufacturing

The manufacturing process of the laminate consists of production of phenolic resin and melamine resin. The phenolic resin is impregnated onto kraft paper and the melamine resin onto decorative paper. These are then pressed together to form laminate of various thicknesses.

The third module considers the whole manufacturing process of laminate including energy consumption, emissions generated during manufacturing, and treatment of waste generated during the manufacturing process (including waste resins, paper and laminate).

This also includes the processing required to cut and adjust the size of the laminate for the specific building projects and the waste treatment of any offcuts from this.

Construction process stage, A4-A5

A4 Transport to site

This considers the transport of laminate from the manufacturing facility to a warehouse in the UK, as well as transport from this warehouse to the point of installation. This has been calculated from actual data for the transport from the manufacturing facility to the warehouse, and calculated scenarios using actual data for the transport from the warehouse to the point of installation.

Scenario information	Value	Unit
Vehicle	16-32t	EURO5
Distance	177	km
Capacity utilisation	50	%
Bulk density	1448	kg/m³

A5 Installation

Installation considers the electricity consumption required and waste produced during the installation of the compact laminate.

Scenario information	Value	Unit
Ancillary materials	0	kg
Water use	0	m³
Electricity	0.45	kWh
Waste laminate	0.09	kg
Material for energy recovery	0.09	kg
Direct emissions	0	kg

End of Life stage, C1-C4

We have developed a dedicated model for End of Life treatment of the laminate. Scenario information has been summarised below.

Process	Value	Unit
Collected with mixed construction waste	100	%
Material for reuse	0	%
Material for recycling	0	%
Material for energy recovery	97	%
Material for final disposal	3	%
Transport distance	100	km

C1 De-construction, demolition

This module considers the impact of the de-construction and/or demolition of the laminate. As no BioCarbon Laminates product has yet reached its end of life, de-construction was assumed to be in line with literature sources.

C2 Transport

This is the transport distance from the site to the waste processing facility. Average distance was estimated based on country specific ecoinvent waste treatment.

C3 Waste processing

Due to the compacted nature of BioCarbon Laminates, all waste material has been assumed disposed in landfill or incineration with no materials being recycled. The proportion of incineration with energy recovery to landfill has been calculated as 97.0% incineration and 3.0% landfill.

C4 Disposal

We have estimated that 3.0% of waste in disposed as landfill.

Benefits, D

Benefits considered in this module includes the avoided impact associated with energy from recovery.

Scenario information	Value	Unit
Lower heating value		
Phenolic resin (dry)	23.04	MJ/kg
Melamine resin (dry)	17.82	MJ/kg
Paper	15.45	MJ/kg
Incineration efficiency		
Electric	15.84	%
Thermal	28.51	%
Landfill gas utilisation		
Electric	27.80	%
Thermal	13.50	%
Landfill gas recovery		
Gas emitted directly	47.00	%
Gas captured and flared	18.02	%
Gas captured and utilised for energy	34.98	%

6. Results - core environmental impacts

1mm		A1-A;	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction			B1-B	B1-B7 Use Stage	φ				C- End of life	of life		D- Benefits
Impact category	Unit	Vlqque leirətem wsA -LA	troq2ns1T-SA	gninutosiunsM -&A	11oqenerT -₽A	-noitourteno	BI- Use	B2- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	B6- Operational energy use	B7 - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Climate change - total	kg CO ₂ eq.	0.784	0.267	1.51	0.0416	0.184	QN	O Z	Q Q	Q Z	Q N	Q N	S S	0.0494	0.0188	1.11	0.00318	-0.596
Climate change – fossil	kg CO ₂ eq.	2.6	0.267	1.37	0.0415	0.181	O Z		Q Z	Q Z	Q Z		Q	0.0494	0.0187	1.04	0.00135	-0.596
Climate change – biogenic	kg CO ₂ eq.	-1.83	4.41E-05	0.113	2.22E-05	0.00305		O Z	Q Z	Q Z	O Z		Q	-1.39E-05	8.65E-06	0.0728	0.00183	1.51E-05
Climate change- land use change	kg CO ₂ eq.	0.0131	0.000177	0.0335	1.49E-05	8.78E-06	9	Q N	Q Z	Q	Q Z	Q	Q.	2.81E-06	7.16E-06	1.64E-05	2.3E-07	-5.15E-05
Ozone Depletion	kg CFC 11 eq.	2.63E-07	5.4E-08	1.18E-07	9.44E-09	1.75E-08	Q.	Q	Q	Q	Q	Q	Q N	5.68E-09	4.14E-09	1.3E-08	1.34E-10	-6.49E-08
Acidification	Mol. H⁺ eq.	0.0171	0.00568	0.00476	0.00017	0.000261	Q	Q Z	Q Z	Q Z	Q Z	Q N	9	8.33E-05	0.000109	0.00217	4.37E-06	-0.00098
Eutrophication aquatic freshwater	kg P eq.	0.000919	2.07E-05	0.000103	3.04E-06	8.6E-06	Q Q	Q	Q	Q	Q	Q N	N Q	2.79E-06	1.72E-06	7.04E-06	7.01E-08	-0.000024
Eutrophication marine	kg N eq.	0.00374	0.00149	0.019	0.000051	8.29E-05	Q	Q Z	Q Z	Q Z	O Z	Q N	9	2.51E-05	3.87E-05	0.00519	0.000645	-0.000271
Eutrophication terrestrial	Mol. N eq.	0.0441	0.0165	0.00926	0.000557	0.000803	Q Q	Q	Q	Q	O Z	Q	Q Z	0.000254	0.000422	0.0115	1.63E-05	-0.0028
Photochemical ozone formation	kg ethene eq.	0.0111	0.00433	0.00293	0.000171	0.000217	O Z	Q Z	Q Z	Q N	Q Q	Q	9	6.84E-05	0.000121	0.00276	0.000005	-0.000857
Depletion of abiotic resources – minerals and metals¹	kg Sb eq.	4.61E-05	3.62E-06	3.03E-06	1.12E-06	2.14E-07	9	Q N	Q Z	Q	Q Z	Q	Q.	6.67E-08	4.75E-07	9.96E-06	3.91E-09	-6.2E-07
Depletion of abiotic resources – fossil fuels	MJ (lower heating value)	50.3	3.67	20.9	0.63	3.92	Q Q	Q	Q	Q	Q	Q N	N Q	1.28	0.288	1.47	0.00984	-13
Water scarcity	m³ world eq.	4.92	0.0169	0.327	0.00283	0.0249	O Z	Q Z	Q Z	Q Z	Q N	Q Z	O Z	0.00806	0.00148	0.0394	0.00044	-0.073
	-																	

Table 1: Environmental impacts by life cycle stage for 1mm
1 The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

6mm		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction ige			B1-F	B1-B7 Use Stage	ę,				C- End	C- End of life		D- Benefits
Impact category	Unit	Vlqqus lsinətem wsA -1A	troqenstT-SA	gnirutɔstunsM -&A	∱oqens₁T - P A	-A5- Construction- installation process	B1- Use	B2- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	B6- Operational energy use	B7 - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Climate change - total	kg CO ₂ eq.	3.51	1.54	6.31	0.24	0.338	ON.	Q	Q Z	Q Z	Q N	Q Q	ON.	0.285	0.108	5.65	0.0185	-3.47
Climate change – fossil	kg CO ₂ eq.	14.3	1.54	6.03	0.239	0.32	O Z	Q Z	Q Z	Q	Q.	O Z	O _N	0.285	0.108	5.25	0.00768	-3.47
Climate change – biogenic	kg CO ₂ eq.	-10.8	0.000257	0.211	0.000128	0.0178	O Z	Q Z	Q Z	Q Z	Q N	O _N	O _N	-8.02E-05	4.99E-05	0.398	0.0108	0.000247
Climate change- land use change	kg CO ₂ eq.	0.0714	0.00102	0.0631	0.000086	9.56E-06	O Z	Q Z	Q Z	Q Z	Q N	O _N	O _N	1.62E-05	4.13E-05	7.76E-05	1.06E-06	-0.000209
Ozone Depletion	kg CFC 11 eq.	1.35E-06	3.12E-07	5.4E-07	5.44E-08	1.79E-08	ON.	Q N	Q Z	Q N	Q N	ON.	ON.	3.28E-08	2.39E-08	5.75E-08	7.68E-10	-3.78E-07
Acidification	Mol. H⁺ eq.	0.0909	0.0328	0.0144	0.000079	0.000287	Q N	O Z	Q Z	Q Z	Q Z	O Z	Q N	0.00048	0.000627	0.00756	2.36E-05	-0.0057
Eutrophication aquatic freshwater	kg P eq.	0.00536	0.00012	0.000279	1.75E-05	8.89E-06	O N	Q N	Q	Q Z	Q	ON.	O N	1.61E-05	9.9E-06	3.34E-05	3.48E-07	-0.00014
Eutrophication marine	kg N eq.	0.021	0.00858	0.0203	0.000294	0.000111	Q N	Q	Q N	QN	ΩN	Q N	Q N	0.000145	0.000223	0.0263	0.00214	-0.00158
Eutrophication terrestrial	Mol. N eq.	0.228	0.095	0.0338	0.00321	0.000929	Q N	Q	Q	Q	Ω N	Q N	QN ND	0.00146	0.00243	0.0394	8.68E-05	-0.0163
Photochemical ozone formation	kg ethene eq.	0.0643	0.025	0.0111	0.000983	0.000252	Q Z	O Z	Q Z	Q Z	Q	Q N	Q N	0.000394	0.000695	0.00953	2.75E-05	-0.00499
Depletion of abiotic resources – minerals and metals¹	kg Sb eq.	0.000212	0.000021	1.21E-05	6.48E-06	2.58E-07	Q N	Q	Q	Q N	Q N	Q N	Q N	3.85E-07	2.74E-06	5.86E-05	2.21E-08	-3.61E-06
Depletion of abiotic resources – fossil fuels	MJ (lower heating value)	281	21.2	96.2	3.63	3.95	O Z	O N	Q Z	Q	O Z	O N	Q N	7.35	1.66	6.05	0.0549	-75.7
Water scarcity	m³ world eq.	25.9	0.0976	0.926	0.0163	0.0261	Q Z	Q	O Z	Ω N	Q	Q	Q	0.0465	0.00852	0.177	0.0025	-0.425

Table 2: Environmental impacts by life cycle stage for 6mm 17be results on these results are high or as there is limited experienced with the indicator. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

	A1-A3	3 - Product 9	Stage	A4-A5- Coi Stag	nstruction ge			B1-E	37 Use Stag	es.				C- End	d of life		D- Benefits
Unit	/lqqus lsirətem wsЯ -IA	TroqznsT-SA	gninutosiunsM -&A	∱ansport -4A	-Roratruction- ezeory nothellsteni	9sU -IB	B2- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	B6- Operational energy use	B7 - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
kg CO ₂ eq.	6.63	3.17	12.5	0.492	0.535	Q Z	QN	Q	Q	Q	Q Q	Q N	0.585	0.222	11.2	0.038	-7.14
kg CO ₂ eq.	28.9	3.17	12.1	0.491	0.498	Q N	Q	O Z	O Z	Q Z	O Z	O _N	0.585	0.222	10.4	0.0157	-7.14
kg CO ₂ eq.	-22.4	0.000529	0.36	0.000262	0.0366	Q	2	Q Z		Q Z		Q	-0.000164	0.000102	0.804	0.0222	0.000544
kg CO ₂ eq.	0.144	0.00209	0.115	0.000176	1.06E-05	Q Z	Q			O Z		Q Z	3.33E-05	8.47E-05	0.00015	2.04E-06	-0.00041
kg CFC 11 eq.	2.68E-06	6.42E-07	1.08E-06	1.12E-07	1.84E-08	Q Z	9	Q N	Q	Q N	Q Z	Q Z	6.73E-08	4.89E-08	1.08E-07	1.57E-09	-7.78E-07
Mol. H⁺ eq.	0.182	0.0673	0.0278	0.00201	0.000321	Q.	Q	O Z	O Z	Q Q	O Z	Q.	0.000985	0.00129	0.0127	4.74E-05	-0.0117
kg P eq.	0.011	0.000246	0.000535	0.000036	9.26E-06	Q	Q Z	O N	O N	O N	O Z	Q	0.000033	2.03E-05	6.46E-05	6.82E-07	-0.000287
kg N eq.	0.0429	0.0176	0.0266	0.000603	0.000146	Q	Q	O Z	O Z	O Z	O Z	Q.	0.000297	0.000457	0.0518	0.00351	-0.00325
Mol. N eq.	0.453	0.195	0.0655	0.00659	0.00109	Q	9	Q N	Q	O Z	Q N	Q	0.003	0.005	0.0658	0.000174	-0.0335
kg ethene eq.	0.132	0.0513	0.0217	0.00202	0.000296	Q Z	O Z	Q Z	Q Z	Q		Q	0.000809	0.00143	0.016	5.58E-05	-0.0103
kg Sb eq.	0.000404	4.31E-05	2.42E-05	1.33E-05	3.14E-07	Q	Q Z	O N	O N	O Z	O Z	Q Z	7.9E-07	5.62E-06	0.000121	4.52E-08	-7.43E-06
MJ (lower heating value)	571	43.6	194	7.45	3.99	Q Z	9	O Z	O _N	O Z	O Z	Q Z	15.1	3.4	11	0.112	-156
m³ world eq.	51.9	0.2	1.78	0.0335	0.0276	Q	Q	O Z	O Z	Q Z	Q Z	Q	0.0954	0.0175	0.334	0.00511	-0.874
	kg CO ₂ eq. kg CO ₂ eq. kg CO ₂ eq. kg CO ₂ eq. kg CFC 11 eq. kg N eq. kg N eq. kg Sb eq. kg Sb eq. mJ (lower heating value)	2.	2.688 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.	A1-A3 - Product Stage A1-A3 - Product Stage A1- Raw material supply 6.63 3.17 12.5 28.9 3.17 12.1 28.9 3.17 12.5 2.68E-06 6.42E-07 1.08E-06 0.0182 0.0673 0.0278 0.011 0.000246 0.000535 0.0429 0.0176 0.0266 0.453 0.195 0.0655 0.0453 0.195 0.0655 2.12E-05 2.18B 0.00513 0.0217 0.000404 4.31E-05 2.42E-05 2.19 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	A1-A3 - Product Stage A1-A3 - Product Stage A1-Raw material supply 6.63 3.17 12.5 28.9 3.17 12.1 28.9 3.17 12.5 2.68E-06 6.42E-07 1.08E-06 0.0182 0.0673 0.0278 0.011 0.000246 0.000535 0.0429 0.0176 0.0266 0.453 0.195 0.0655 0.0453 0.195 0.0655 2.12E-05 2.178 0.0513 0.0217 0.000404 4.31E-05 2.42E-05 2.19 0.02 0.02 0.0266	A1-A3 - Product Stage A4-A5 - Cor Stage A2- Fransport A2- Fransport A2- Fransport A3- Product Stage A2- Fransport A2- Fransport A3- Product Stage A3-	A1-A3 - Product Stage A4-A5 - Construction Stage A2-A Manufacturing A3-A Manufacturing A4-A5 - Construction A3-A Manufacturing A3-A Manufacturing A3-A Manufacturing A3-A Manufacturing A4- Transport A5- Construction- A4- Transport A5- Construction- A4- Transport A5- Construction A5- Construction A5- Construction A6-A5	A1-A3 - Product Stage	A1-A3 - Product Stage A4-A5-Construction A2-A7 - Product Stage A2-Transport A3-Transport A3-Transport A3-Transport A3-A7 - Transport A3-A - Transport A4-A5-Construction- A3-A - Transport A4-A5-Construction- A3-A - Transport A4-A5-Construction- A3-A - Transport A4-A5-Transport A4-A5-Transport A4-A5-Transport A4-A5-Transport A4-A5-Transport A4-A5-Transport A4-A5-Transport A4-A5-Transport A4-A-Transport A4-A-Transport A4-A-Transport A4-A-Transport A4-A-Transport A4-A-Transport A5-Construction- A4-A-Transport A4-A-Transport A4-A-Transport A5-Construction- A5-Construction- A5-Construction- A5-Construction- A5-Construction- A5-Construction- A5-Transport A5-Construction- A5-Transport A5-Construction- B1-Use B1-Use B2-Maintenance B3-Repair B3-	A4-A5- Construction Stage A3-17	A4-A5 - Construction	A1-A3- Product Stage	At 1, Product Sage At 1, P	At 1, Product Sage At 1, P	AttA3 = Product Stage	At-Abbet At-Abbet	Adjace A

Table 3: Environmental impacts by life cycle stage for 12.5mm 1 The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

20mm		A1-A:	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction age			B1-E	B1-B7 Use Stage	ę,				C- End of life	of life		D- Benefits
Impact category	Unit	VI- Raw material supply	Transport	gnirutəsiunsM -&A	∱roqensזT - b A	-RA- Construction- sesoonq notisilisteni	B1- Use	B2- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	B6- Operational energy use	Isnorisarional Ser use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Climate change - total	kg CO ₂ eq.	10.3	5.07	19.3	0.788	0.765	O N	Q N	Q N	Q	Q Z	9	Q Z	0.936	0.355	17.6	0.0608	-11.4
Climate change – fossil	kg CO ₂ eq.	46.1	5.07	18.7	0.787	0.706	O _N	Q		O Z		9	Q Z	0.936	0.355	16.3	0.0251	-11.4
Climate change – biogenic	kg CO ₂ eq.	-36	0.000848	0.464	0.00042	0.0586	O _N	QZ				Q	Q	-0.000263	0.000164	1.28	0.0357	0.000892
Climate change- land use change	kg CO ₂ eq.	0.23	0.00335	0.137	0.000283	1.17E-05	O Z	Q				Q Z	Q Z	5.33E-05	0.000136	0.000235	3.18E-06	-0.000646
Ozone Depletion	kg CFC 11 eq.	4.23E-06	1.03E-06	1.69E-06	1.79E-07	1.9E-08	Q N	Ω N	Q	Q	Q	Q N	Q N	1.08E-07	7.84E-08	1.68E-07	2.52E-09	-1.25E-06
Acidification	Mol. H+ eq.	0.289	0.108	0.0398	0.00322	0.000361	Q Z	Q	O Z	O Z	O Z	9	Q Z	0.00158	0.00206	0.0188	7.54E-05	-0.0188
Eutrophication aquatic freshwater	kg P eq.	0.0177	0.000393	0.000743	5.76E-05	9.69E-06	O _N	Ω Z	Q N	Q	Q	Q N	Q Z	5.28E-05	3.25E-05	0.000101	1.07E-06	-0.000461
Eutrophication marine	kg N eq.	0.0685	0.0282	0.035	0.000966	0.000188	Q N	Q Z	Q Z	O Z	Q Z	9	Q Z	0.000476	0.000732	0.0818	0.00512	-0.00521
Eutrophication terrestrial	Mol. N eq.	0.717	0.312	0.0984	0.0106	0.00128	Q N	Q Z	Q N	Q	Q	Q.	Q N	0.0048	0.008	9960'0	0.000277	-0.0537
Photochemical ozone formation	kg ethene eq.	0.211	0.0822	0.0328	0.00323	0.000348	Q N	Q Z	Q Z	O Z	Q Z	9	Q Z	0.0013	0.00228	0.0235	8.89E-05	-0.0165
Depletion of abiotic resources – minerals and metals¹	kg Sb eq.	0.000629	0.000069	3.69E-05	2.13E-05	3.8E-07	ON.	Q	Q N	Q N	Q N	Q.	Q Z	1.26E-06	0.00000	0.000194	7.22E-08	-1.19E-05
Depletion of abiotic resources – fossil fuels	MJ (lower heating value)	912	69.8	301	11.9	4.04	O Z	O Z	O Z	O Z	Ω Z	Q	Q N	24.2	5.45	16.9	0.178	-250
Water scarcity	m³ world eq.	82.3	0.321	2.51	0.0537	0.0293	Q	Q	O Z	Q	Q Z	Q	Q Z	0.153	0.028	0.519	0.00818	-1.4

Table 4: Environmental impacts by life cycle stage for 20mm

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

7. LCA Results - additional environmental impacts

1mm		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction			B1-B	B1-B7 Use Stage	ø				C- End	C- End of life		D- Benefits
Impact category	Cnit	V1- Raw material supply	troqensıT-SA	gninutaeituneM -&A	1-pqsns1T -4-A	-A5- Construction- rinstallation process	B1- Use	B2- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	Borerational Senergy use	lsnoitsragO - 78 azu ratsw	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Eutrophication aquatic freshwater	kg PO ₄ eq.	2.82E-03	6.35E-05	3.16E-04	9.33E-06	2.64E-05	Q N	Q 2	Q	Q Z	Q Z	Ω Z	QN	8.57E-06	5.28E-06	2.16E-05	2.15E-07	-7.37E-05
Climate change - GWP - GHG (IPCC AR5)	kg CO ₂ eq.	4.930	2.540	0.264	1.410	0.041	O Z	Q	Q Z		Q Z		Q	0.049	0.019	1.010	0.002	-0.587
Particulate Matter emissions	Disease incidence	2.73E-07	1.49E-08	1.52E-08	2.9E-09	9.35E-10	O Z	Q	Q Z		Q Z		Q	2.85E-10	1.69E-09	9.62E-09	7.43E-11	-3.12E-09
lonizing radiation, human health²	kBq U235e	0.16	0.0177	0.196	0.00323	0.124	Q N	Q	Q	Q	Q Z	O Z	Q.	0.0404	0.00136	0.00281	4.74E-05	-0.294
Eco-toxicity (freshwater) ¹	CTUe	149	2.95	404	0.523	0.637	Q N	Q	Q	Q	Q Z	O Z	Q.	0.202	0.263	3860	0.00758	-3.04
Human toxicity, cancer effects ¹	CTUh	3.35E-09	1.48E-10	1.74E-10	1.41E-11	1.39E-11	Q N	Q Z	Q N	Q Z	Q Z	Q N	Q.	3.87E-12	8.18E-12	5.19E-11	2.16E-13	-4.84E-11
Human toxicity, non-cancer effects ¹	CTUh	4.51E-08	2.63E-09	5.65E-09	4.94E-10	4.52E-10	Q N	QN	Q	Q	Q	Q N	Q.	1.31E-10	2.5E-10	9.45E-10	4.98E-12	-1.71E-09
Land use related impacts/Soil quality		275	1.67	-1.51	0.431	0.163	Q Z	Q	Q	Ω Z	Q Z		9 N	0.0512	0.245	0.723	0.00242	-0.517

Table 5: EN 15804 Additional impacts by Life Cycle stage for 1mm

¹ The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

6mm		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction			B1-B	B1-B7 Use Stage	e B				C- End of life	of life		D- Benefits
Impact category	Unit	Ylqqus Isirətsm wsA -LA	1roqens₁T-SA	gninutostunsM -&A	110q2ns1T - P.A	-A5- Construction- roressallation process	B1- Use	92- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	Benotherado - da San vga ane	By - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Eutrophication aquatic freshwater	kg PO₄ eq.	1.65E-02	3.68E-04	8.57E-04	5.37E-05	2.73E-05	O Z	Q Z	Q Z	O Z	9	Q	Q	4.94E-05	3.04E-05	1.03E-04	1.07E-06	-4.30E-04
Climate change - GWP - GHG (IPCC AR5)	kg CO ₂ eq.	13.902	1.528	6.041	0.237	0.324	O Z	Q Z	Q N		9	Q	Q	0.283	0.107	5.153	0.014	-3.420
Particulate Matter emissions	Disease incidence	1.47E-06	8.65E-08	4.52E-08	1.67E-08	1.22E-09	Q Z	□ Z	O Z		2		Q	1.65E-09	9.72E-09	4.24E-08	4.21E-10	-1.82E-08
lonizing radiation, human health²	kBq U235e	0.901	0.102	1.1	0.0186	0.124	O Z	O Z			2	Q	Q	0.233	0.00783	0.0143	0.000257	-1.71
Eco-toxicity (freshwater) ¹	CTUe	895	17.1	2354	3.02	0.728	O N	Q Z	O Z	Q Z	9	Q	Q	1.16	1.52	22770	0.0414	-17.7
Human toxicity, cancer effects ¹	CTUh	2.03E-08	8.58E-10	5.92E-10	8.14E-11	2.37E-11	Q N	Q Z	Q Z	O Z	9	Q	Q	2.23E-11	4.72E-11	2.54E-10	1.21E-12	-2.82E-10
Human toxicity, non-cancer effects ¹	CTUh	2.57E-07	1.52E-08	2E-08	2.85E-09	6.9E-10	Q N	Q Z	Q	Q N	g S	Q	Q	7.56E-10	1.44E-09	4.31E-09	2.75E-11	-9.93E-09
Land use related impacts/Soil quality		1723	79.67	-0.354	2.48	0.193	Q Z	O Z	O Z	Q Z	O Z	Q Z	Q	0.295	1.41	4.08	0.0137	-3.02

Table 6: EN 15804 Additional impacts by Life Cycle stage for 6mm

¹ The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

12.5mm		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction ge			B1-B	B1-B7 Use Stage	ge				C- End of life	of life		D- Benefits
Impact category	Unit	V1- Raw material supply	troqensiT-≤A	gninutostunsM -&A	110q2ns1T - 1 A	-A5- Construction- sesoon notalistical	B1- Use	92-Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	lsnorberadO - 88 esu vgrane	B7 - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Eutrophication aquatic freshwater	kg PO₄ eq.	3.38E-02	7.55E-04	1.64E-03	1.11E-04	2.84E-05	O Z	O Z	O Z	O Z	Q Z	Q	O Z	1.01E-04	6.23E-05	1.98E-04	2.09E-06	-8.81E-04
Climate change - GWP - GHG (IPCC AR5)	kg CO ₂ eq.	28.129	3.139	12.045	0.487	0.506	Q N	Q N	Q Z	Q N	9	Q Z	Q	0.581	0.220	10.199	0.028	-7.039
Particulate Matter emissions	Disease incidence	2.95E-06	1.78E-07	8.62E-08	3.43E-08	1.59E-09	N N	Q	Z Z	O Z	9	Q Z	O Z	3.38E-09	2E-08	7.96E-08	8.6E-10	-3.74E-08
lonizing radiation, human health 2	kBq U235e	1.84	0.21	2.26	0.0382	0.124	O N	QZ	□ Z	O Z	Q Z	Q		0.478	0.0161	0.0282	0.000519	-3.53
Eco-toxicity (freshwater) ¹	CTUe	1857	35	4856	6.19	0.843	O Z	Q	Q Z	O Z	9	Q Z	Q	2.39	3.11	47018	0.0838	-36.4
Human toxicity, cancer effects ¹	CTUh	4.22E-08	1.76E-09	1.16E-09	1.67E-10	3.62E-11	Q N	Q N	Q Z	Q N	9	Q.	Q	4.58E-11	9.68E-11	4.95E-10	2.47E-12	-5.79E-10
Human toxicity, non-cancer effects ¹	CTUh	5.27E-07	3.13E-08	3.93E-08	5.85E-09	9.94E-10	Q N	Q N	Q N	Q N	9	Q Z	Q	1.55E-09	2.96E-09	8.2E-09	5.58E-11	-2.04E-08
Land use related impacts/Soil quality		3613	19.9	0.111	5.1	0.231	ΩZ	Q Z	O Z	Q Z	QN	Q	Q Z	909:0	2.9	8.32	0.028	-6.21

Table 7: EN 15804 Additional impacts by Life Cycle stage for 12.5mm

¹ The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	ge ge		ə	B1-B	B1-B7 Use Stage			ı	ʻuo	C- End of life	l of life gai		D- Benefits
Impact category	Unit	us Isinətem waf -LA	17oqsnrsT-SA	ıinutəstunsM -&A	transport	A5- Construction proce	B1- Use	B2- Maintenanc	B3- Repair	B4- Replacemen	B5- Refurbishme	B6- Operationa energy use	B7 - Operationa water use	ti- De-constructi notilomab	C2- Transport	C3- Waste process	C4- Disposal	
Eutrophication aquatic freshwater	kg PO ₄ eq.	5.43E-02	1.21E-03	2.28E-03	1.77E-04	2.97E-05	Q	Q	9	Q Z	Q	Q	O Z	1.62E-04	9.98E-05	3.10E-04	3.28E-06	-1.42E-03
Climate change - GWP - GHG (IPCC AR5)	kg CO ₂ eq.	44.809	5.027	18.588	0.780	0.720	O N	Q Z	Q Z	Q Z	O Z	O Z	O Z	0.930	0.352	16.116	0.045	-11.282
Particulate Matter emissions	Disease incidence	4.69E-06	2.85E-07	1.25E-07	5.49E-08	2.02E-09	O N	Q	Ω Z	Q	O Z	O Z		5.41E-09	3.19E-08	1.23E-07	1.37E-09	-5.99E-08
Ionizing radiation, human health²	kBq U235e	2.93	0.336	3.61	0.0612	0.124	O N	Q	 	Q	Q Z	Q N		0.766	0.0257	0.0446	0.000825	-5.65
Eco-toxicity (freshwater) ¹	CTUe	2984	56.1	7780	9.91	0.978	O N	Q	Ω Z	Q	Q Z	O Z		3.82	4.98	75446	0.133	-58.4
Human toxicity, cancer effects¹	CTUh	6.78E-08	2.82E-09	1.71E-09	2.67E-10	5.08E-11	Q N	Q Z	Q	9	Q Z	Q N		7.34E-11	1.55E-10	7.79E-10	3.95E-12	-9.29E-10
Human toxicity, non-cancer effects ¹	CTUh	8.42E-07	5.01E-08	5.85E-08	9.37E-09	1.35E-09	Q	Q	Q	Q.	Q	Q	Q	2.48E-09	4.74E-09	1.28E-08	8.9E-11	-3.28E-08
Land use related impacts/Soil quality		5829	31.8	3.31	8.16	0.275	Q Z	Q N	Q	9	Q Z	Q Q	Q N	0.97	4.64	13.3	0.0448	96.6-

Table 8: EN 15804 Additional impacts by Life Cycle stage for 20mm

¹ The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

8. LCA Results - resource use

1mm		A1-A	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction			B1-E	B1-B7 Use Stage	96				C- Enc	C- End of life		D- Benefits
Impact category	Unit	V1- Raw material supply	troqans1T-SA	gnirutəstuneM -&A	110q2ns1T - 1 A	-R5- Construction	esU -18	92- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	Borotisarional Sanetigy use	By - Operational Water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Use of renewable primary energy	Σ	34.5	0.0488	4.94	0.00885	0.0494	Q Z	9	Q Z	Q	Q	Q N	Q	0.0161	0.00355	0.0137	0.00019	-0.126
Use of renewable primary energy resources as raw materials	Σ	15.9	1.54	6.03	0.239	0.32	Q Z	Q Z	Q Z	Q Z	Q Z	O Z	Q	0.285	0.108	5.25	0.00768	-3.47
Total use of renewable resources	Σ	50.4	0.0488	4.94	0.00885	0.0494	Q Z	QN	O Z	O Z	Q Z	O Z	Q _N	0.0161	0.00355	0.0137	0.00019	-0.126
Use of non-renewable primary energy	Σ	40.988	3.67	20.9	0.63	3.92	Q Z	Q	Q Z	Q Z	Q Z	O Z	Q	1.28	0.288	1.47	0.00984	-13
Use of non-renewable primary energy resources as raw materials	Σ	9.312	0.00	00:00	00:00	00:00	Q Z	Q Z	9	Q Z	Q	O N	QN	00:00	0.00	0.00	0.00	0.00
Total use of non- renewable resources	Σ	50.3	3.67	20.9	0.63	3.92	Q Z	QN	QN	QN	Q Z	Q N	Q	1.28	0.288	1.47	0.00984	-13
Use of secondary material	у 80	0.00	00:00	00:00	00:00	00:00	Q Z	Q	9	9	Q Z	O N	Q Z	0.00	0.00	00:00	0.00	0.00
Use of renewable secondary fuels	Σ	0.00	0.00	0.00	00:00	00:00	Q Z	Q Z	9	9	Q	O N	Q N	0.00	00:00	0.00	0.00	00.00
Use of non-renewable secondary fuels	Σ	0.00	00:00	00:00	00:00	0.00	Q Z	Q	Q Q	Q Q	Ω Z	Q N	Q	00:00	0.00	00:00	0.00	00:00
Use of net fresh water	∑	0.114	0.000392	0.00762	0.000066	0.000581	Q Z	Q Z	Q	Q	Q Z	Q N	Q Z	0.000188	3.44E-05	0.000918	1.03E-05	-0.0017
Table 9: Resource use categories by life cycle stage for 1mm	ries by life cycle	stage for 1m	ш.															

6mm		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	Construction Stage			B1-B	B1-B7 Use Stage	ę,				C- End	C- End of life		D- Benefits
Impact category	Unit	V1- Raw material supply	troqensiT-SA	gnirutɔstunsM -&A	110q2ns1T - 1 A	-A5- Construction- installation process	esU -18	92-Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	Beregy use	B7 - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Use of renewable primary energy	Ž	203.7	0.282	9.65	0.051	0.05	Q	Q	Q Z	Q Z	Q Z		O Z	0.0926	0.0204	0.0646	0.00092	-0.126
Use of renewable primary energy resources as raw materials	Σ	93.3	00:00	0.00	0.00	00:00	Q N	Q	Q N	O N	O Z	O Z	Q	0.00	0.00	0.00	00:00	0.00
Total use of renewable resources	Σ	297	0.282	9.65	0.051	0.05	Q N	Q N	O Z	Q Z	Q Z	Q Z	Q	0.0926	0.0204	0.0646	0.00092	-0.126
Use of non-renewable primary energy	Σ	227.9	21.2	96.2	3.63	3.95	Q Z	Q		O Z	O Z		O Z	7.35	1.66	6.05	0.0549	-13
Use of non-renewable primary energy resources as raw materials	Σ	53.1	0.00	0.00	0.00	00:00	Q	Q	Q	Q	QN	Q	Q N	0.00	0.00	00:00	00:00	0.00
Total use of non- renewable resources	Σ	281	21.2	96.2	3.63	3.95	Q Z	QN	Q	Q N	Q Q	Q	ND	7.35	1.66	6.05	0.0549	-13
Use of secondary material	8	0.00	00:00	0.00	0.00	00:00	Q Z	QN	Q	Q N	O Z	Q	ND	0.00	00:00	00:00	00:00	0.00
Use of renewable secondary fuels	Σ	0.00	00:00	0.00	0.00	00:00	Q Z	Q _N	O Z	Q Z	O Z	Q N	ND	0.00	00:00	00:00	00:00	0.00
Use of non-renewable secondary fuels	Σ	0.00	00.00	00:00	0.00	00.00	Q Z	QN	Q	Q	Ω N	Q	ND	00:00	00:00	0.00	00:00	0.00
Use of net fresh water	∞∑	0.604	0.00227	0.0216	0.00038	0.000607	Q Z	Q	O Z	O Z	Q N	Q Z	Q	0.00108	0.000198	0.00411	5.83E-05	-0.0017

Table 10: Resource use categories by life cycle stage for 6mm

12.5mm		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction ge			B1-B	B1-B7 Use Stage	Đ.				C- End of life	of life		D- Benefits
Impact category	Unit	Vlqqus lsirətsm wsA -1A	∱roqenετT-SA	gnirutəsinnsM -&A	110qsns1T -AA	-A5- Construction- sesoong nothellesteni	B1- Use	92- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	Bo- Operational energy use	B7 - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Use of renewable primary energy	Σ	420.7	0.58	17.7	0.105	0.0508	Q	O Z	Q Z	Q	Q Z	Q Z		0.0419	0.124	0.00179	-1.48	0.0419
Use of renewable primary energy resources as raw materials	Σ	192.3	00:00	0.00	00:00	0.00	Q N	Q.	Q	Ω Z	Q	Q	O N	0.00	0.00	0.00	00:00	0.00
Total use of renewable resources	Σ	613	0.58	17.7	0.105	0.0508	Q N	QN	Q Z	Q	Q	Q	Q N	0.0419	0.124	0.00179	-1.48	0.0419
Use of non-renewable primary energy	Σ	463.4	43.6	194	7.45	3.99	Q Z	g S	Q N	Q	O Z	QN	O N	15.1	3.4	11	0.112	-156
Use of non-renewable primary energy resources as raw materials	Σ	108.6	00:00	00:00	00:00	0.00	Q N	QN	Q	Q	Q	Q	Q	00:00	00:00	0.00	00:00	0.00
Total use of non- renewable resources	Σ	572	43.6	194	7.45	3.99	Q	QN	Q N	ΩN	Q	Q	Q	15.1	3.4	11	0.112	-156
Use of secondary material	Х	00:00	00:00	00:00	0.00	0.00	Q	QN	Q N	Q	Q	QN	Q	00:00	00:00	0.00	00:00	0.00
Use of renewable secondary fuels	Σ	00:00	00:00	00:00	0.00	0.00	Q	Q	Q	Q	Q	Q	Q	0.00	00:00	0.00	00:00	0.00
Use of non-renewable secondary fuels	Σ	00:00	00:00	00:00	0.00	0.00	Q	Q	Q N	Q N	Q	Q	Q	0.00	0.00	0.00	00:00	0.00
Use of net fresh water	Σ	1.21	0.00467	0.0415	0.00078	0.000642	9	Q	Q Z	Q Z	Q Z	Q N	Q Z	0.00222	0.000407	0.00778	0.000119	-0.0203

Table 11: Resource use categories by life cycle stage for 12.5mm

20mm		A1-A3	A1-A3 - Product Stage	Stage	A4-A5- Construction Stage	nstruction ge			B1-B	B1-B7 Use Stage	Đ,				C- End of life	of life		D- Benefits
Impact category	Unit	V1- Raw material supply	troqensiT-SA	gninutosiunsM -&A	110q2ns1T -AA	-northuntruction - GA szeszeszeszeszeszeszeszeszeszeszeszeszes	B1- Use	92- Maintenance	B3- Repair	B4- Replacement	B5- Refurbishment	Bo- Operational energy use	BN - Operational water use	C1- De-construction, demolition	C2- Transport	C3- Waste processing	C4- Disposal	
Use of renewable primary energy	Ī	675.6	0.929	21.5	0.168	0.0517	Q Z	O Z	Q Z	Q	Q	Q Z		0.304	0.0671	0.195	0.00281	-2.37
Use of renewable primary energy resources as raw materials	Σ	308.4	0.00	0.00	00:00	0.00	Q	Q N	Q	Ω Z	Q N	Q	O Z	0.00	0.00	0.00	00:00	0.00
Total use of renewable resources	Σ	984	0.929	21.5	0.168	0.0517	Q N	QN	Q Z	Q	Q	Q	Q N	0.304	0.0671	0.195	0.00281	-2.37
Use of non-renewable primary energy	Σ	738.3	8.69	301	11.9	4.04	Q.	9	Q N	Q	Q N	QN	Q Z	24.2	5.45	16.9	0.178	-250
Use of non-renewable primary energy resources as raw materials	Σ	173.7	00:00	00:00	00:00	00:00	Q N	Q.	Q	Q	Q	QN	Q N	0.00	00:00	0.00	00:00	0.00
Total use of non- renewable resources	Σ	912	8.69	301	11.9	4.04	Q N	QN	Q Z	Q	Q	Q	Q N	24.2	5.45	16.9	0.178	-250
Use of secondary material	R B	0.00	00:00	0.00	0.00	0.00	Q Z	QN	Q N	Q	Ω Z	QN	Q	00:00	00:00	0.00	00:00	0.00
Use of renewable secondary fuels	Σ	00:00	00:00	0.00	0.00	0.00	ΩZ	Q	Q N	Q	Ω N	Q	Q Z	0.00	00:00	0.00	00:00	0.00
Use of non-renewable secondary fuels	Σ	00:00	00:00	0.00	0.00	0.00	ΩZ	Q	Q N	Q N	Ω N	Q	Q Z	0.00	00:00	0.00	00:00	0.00
Use of net fresh water	∞ ∑	1.92	0.00748	0.0585	0.00125	0.000682	9	Q	Q Z	Q Z	Q Z	Q Z	Q Z	0.00356	0.000652	0.0121	0.00019	-0.0326

Table 12: Resource use categories by life cycle stage 20mm

9. LCA interpretation

The tables in the above section demonstrate how each stage contributes to the overall environmental impacts of the four thicknesses of BioCarbon Laminates per FU $(1m^2)$. For all other than climate change including biogenic carbon, most of the environmental impact is due to the sourcing of raw materials (A1-A2), such as kraft paper and phenol. For example, for 12.5mm the raw materials account for between 57% (climate change, excl. biogenic carbon) and 96% (water scarcity).

The transportation module (A4) accounts for minimal environmental or resource use impact during the products life cycle.

Figure 1 below summarises the impact of each life cycle stage on three key impact indicators for 12.5mm, the main thickness. In terms of total global warming potential, the manufacturing stage (A3) has the largest impact of the life cycle stages at 12.5 kg $\rm CO_2e$ per $\rm m^2$, due to the energy required for the manufacturing process. The waste treatment stage (C1-C4) also has a considerable impact of 12.0 kg $\rm CO_2e$ per $\rm m^2$ because of the energy required for municipal incineration. Reuse of recycling of the laminate at the end of life would result in considerably lower emissions in this module. Raw materials sourcing (A1-A2) uses the largest amount of non-renewable energy of any stage in the lifecycle at 615 MJ per $\rm m^2$ with most of this energy originating from the raw materials (A1) module. These stages are also where the vast majority (52.1 $\rm m^3$) of water consumption occurs.

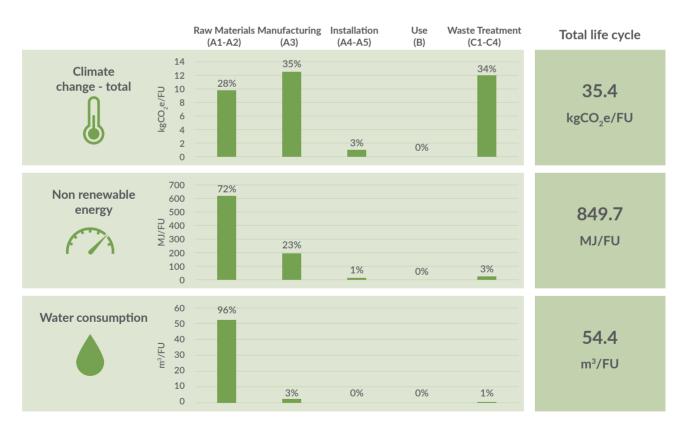


Figure 1: Summary of the impact of life cycle stages on three key environmental impact categories

Biogenic carbon

Biogenic carbon content of the product is detailed below.

		Biogenic carbon c	ontent		
	1mm	6mm	12.5mm	20mm	Unit
Product	0.45	2.64	5.46	8.75	kg C
Packaging	0.02	0.09	0.19	0.30	kg C

Investigating the full range of thicknesses Figure 2 and Figure 3 below illustrates climate change impact for total emissions and fossil emissions respectively.

The emissions associated with installation (A4-A5) remain relatively constant across thicknesses. Emissions from materials (A1-A2), manufacturing (A3), and waste treatment (C1-C4) are all approximately linearly correlated with the thickness.

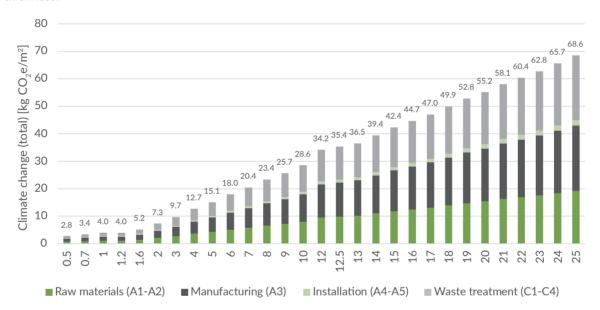


Figure 2 Climate change (total) impact across BioCarbon Laminates thicknesses

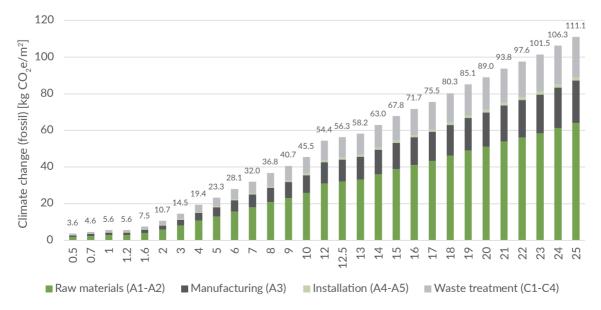


Figure 3 Climate change (fossil) impact across BioCarbon Laminates thicknesses

Waste data

A1-3 Product Stage

Waste Type	1mm	6mm	12.5mm	20mm	Unit
Hazardous waste	0	0	0	0	Kg
Non-hazardous waste	0.39	2.22	4.56	7.30	Kg
Radioactive waste	0	0	0	0	Kg

Process	1mm	6mm	12.5mm	20mm	Unit
Components for reuse	0.02	0.12	0.25	0.39	Kg
Material for recycling	0.00	0.00	0.00	0.00	Kg
Material for energy recovery	0.14	0.83	1.70	2.71	Kg
Material for final disposal	0.22	1.28	2.62	4.20	Kg
Exported energy	0.00	0.00	0.00	0.00	MJ

A4-5 Construction Stage

Waste Type	1mm	6mm	12.5mm	20mm	Unit
Hazardous waste	О	0	0	0	Kg
Non-hazardous waste	0.03	0.16	0.34	0.54	Kg
Radioactive waste	0	0	0	0	Kg

Process	1mm	6mm	12.5mm	20mm	Unit
Material for reuse	0.00	0.00	0.00	0.00	Kg
Material for recycling	0.00	0.00	0.00	0.00	Kg
Material for energy recovery	0.02	0.12	0.25	0.39	Kg
Material for final disposal	0.01	0.04	0.09	0.14	Kg
Exported energy	0.00	0.00	0.00	0.00	MJ

C1-4 End of Life

Waste Type	1mm	6mm	12.5mm	20mm	Unit
Hazardous waste	0	0	0	0	Kg
Non-hazardous waste	1.53	8.82	18.10	28.98	Kg
Radioactive waste	0	0	0	0	Kg

Process	1mm	6mm	12.5mm	20mm	Unit
Material for reuse	0.00	0.00	0.00	0.00	Kg
Material for recycling	0.00	0.00	0.00	0.00	Kg
Material for energy recovery	1.48	8.56	17.56	28.11	Kg
Material for final disposal	0.05	0.26	0.54	0.87	Kg
Exported energy	0.00	0.00	0.00	0.00	MJ

10. References

ISO 14025:2006 - Environmental labels and declarations - Type III environmental declarations -Principles and procedures

ISO 14040:2006 - Environmental management - Life Cycle Assessment - Principles and framework

ISO 14044:2006 - Environmental management - Life Cycle Assessment - Requirements and guidelines

EN 15804:2012+A2:2019 - Sustainability of construction works - Environmental product declaration -Core rules of the product category of construction products

To order samples please contact our UK Distributor Performance Panels Ltd.

★ +44 (0) 1422 310319

info@performance-panels.co.uk
www.performance-panels.co.uk

www.biocarbonlaminates.com

The mark of responsible forestry