Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A1:2013 for:

Glued laminated timber beams

from ZAZA TIMBER Production, Ltd

Programme:	The International EPD® System, www.environdec.com
Programme operator:	EPD International AB
EPD registration number:	S-P-04453
Version	V1
Publication date:	2021-10-06
Valid until:	2026-10-06
Geographical scope	Latvia, Norway, Sweden

Programme information

	The International EPD [®] System
Programme:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden
	www.environdec.com info@environdec.com

Product category rules (PCR): PCR 2012:01 Construction products and construction services (EN 15804:A1) (2.33)

Sub PCR: SUB-PCR TO PCR 2012:01, Wood and wood-based products for use in construction (EN 16485:2014)

PCR review was conducted by: The Technical Committee of the International EPD® System. Chair: Massimo Marino. Contact via info@environdec.com.

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

 \Box EPD process certification \boxtimes EPD verification

Third party verifier: Marcel Gómez Ferrer Marcel Gómez Consultoria Ambiental Email: info@marcelgomez.com

Approved by: The International EPD[®] System

Procedure for follow-up of data during EPD validity involves third party verifier:

 \Box Yes \boxtimes No

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

Differences versus previous versions of the EPD

This is the first version of the EPD.

Company information

	<u>Owner</u>	of the EPD							
		ZAZA TIMBER Production, Ltd							
	Jelgav	Jelgavas nov., Cenu pag., Raubēni, Rubeņu ceļš 46							
		Latvia							
	Contact person	Edgars Rudzitis							
TIMBER	Contact person	edgars.rudzitis@zazatimber.lv t							
	Web	www.zazatimber.lv							
	LCA Technical support								
AUVER A	COD	CODDE- Département du LCIE Bureau Veritas							
	170 Ru	e de Chatagnon – 38430 MOIRANS - FRANCE							
	Tel	+33 (0)4 76 07 36 46							
	Email	codde@fr.bureauveritas.com							
	Web	www.codde.fr							
	Managen	nent support							
		Bureau Veritas Latvia							
		Duntes iela 17a, Riga, LV-1005, Latvia							
	Tel	+371 67323246							
VERITAS	Email	riga@bureauveritas.com							

Description of the organisation:

ZAZA TIMBER Production, Ltd is a research centre for large-sized timber structures: components of timber bridges, bearing structures, etc... It activities are organized between to industrial research and experimental production. The company conducts researches, to create Latvian products with high export capacity, develops prototypes (project developing, designing) and finally, tests the new timber components.

For additional information about ZAZA TIMBER Production, Ltd please visit the company web site at http://www.zazatimber.lv/.

<u>Name and location of production site:</u> ZAZA TIMBER Production, Ltd production plant: Jelgavas nov., Cenu pag., Raubēni, Rubeņu ceļš 46 Latvia

Product information

Product name:

- Glued laminated timber beam from spruce
- Treated glued laminated timber beam from pine

<u>Geographical scope:</u> Norway, Sweden and Latvia.

<u>UN CPC code:</u> 311-312 Products of wood, cork, straw and plaiting materials

<u>Product description:</u> ZAZA TIMBER PRODUCTION, Ltd products are glued laminated wooden beam (PUR and MUF glues). They are used in several areas of large-sized timber structures. Products have different characteristics corresponding to different applications as house construction or bridges.

Physical characteristic and applications:

	Glued laminated timber beam from spruce	Treated glued laminated timber beam from pine
Application	Bridges and building timber structures	Bridges and building timber structures
Release of formaldehyde	Formaldehyde release class E1 according to the standard EN 14080	Formaldehyde release class E1 according to the standard EN 14080
Characteristics	From spruceUntreated	 From pine Creosote and Tanalith E impregnated
Density (kg/m3)	440	450
Moisture content (%)	12+/-2	14+/-2
Reaction to fire (EN 13501-1)	D-s2, d0	D-s2, d0

LCA information

Declared unit: The declared units are:

- one cubic metre (1 m3) of glued laminated timber beam from spruce with a density of 440 kg/m³ and a delivery moisture content of 12%, ready to be used in bridges and building timber structures
- one cubic metre (1 m3) of treated glued laminated timber beam from pine with a density of 450 kg/m³ and a delivery moisture content of 14% ready to be used in bridges and building timber structures

<u>Reference service life:</u> Wood is a very resistant material. It is complex to exactly establish the service life of the product. The ZAZA TIMBER Production, Ltd laminated timber beams are designed to overcome the building service life hence a 100 year period of service life has been estimated for these products. <u>Time representativeness:</u> Data were collected by ZAZA TIMBER Production, Ltd and are representative of 2020 manufacturing technologies.

Database(s) and LCA software used: Database used is mainly Ecoinvent 3.6 Allocation, cut-off by classification. Only one data (PU glue) has been modelled with the CODDE-2020-12 database. The software used is EIME V5.9.1. Environmental indicators calculated according to EN 15804+A1 (CML-IA version 4.1, baseline)

<u>Description of system boundaries:</u> Type of EPD: cradle to grave, with options

The following life cycle stages are taken into account in the analysis:

- Product stage A1-A3
- Transport stage A4
- End of life stage C2-C4

• Benefits and loads beyond the system boundary D

As installation process and maintenance operations can differ among the application, modules A5, B1-B7 and C1 have not been included.

An allocation based in mass has been done where necessary.

<u>Cut-off criteria:</u> Flows that can be excluded from the study because of the difficulty of attributing them to a particular reference flow are the following:

• The lighting, heating, sanitation and cleaning of facilities

- The transportation of employees and the staff catering facilities.
- The manufacture and maintenance of production tools and infrastructures
- Flows from R&D, administrative, management, and marketing poles.

The proportion of non-modelled elements is in compliance with the 1 % of renewable and non-renewable primary energy usage and the 1%-in-weight cut-off rule over the life-cycle considered. The total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass.

Modularity principle and polluter pays principle have been applied in the study.

Description of system boundaries

	Life Cycle Stages															
Building life-cycle information												Benefits and loads beyond the system boundary				
Upstream processes	Cc proce	ore esses		Downstream processes									Other environmental information			
Raw material supply	Transport	Manufacturing	Transport	Construction - installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction - demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
``	(✓	MND	MND	MND	MND	MND	MND	MND	MND	MND	\checkmark	✓	\checkmark	\checkmark

Product stage

• A1 - Raw material supply: extraction and processing of raw materials.

Generation of electricity, steam and heat from primary energy resources, also including their extraction, refining and transport. This also includes energy needed for raw material supply and energy for manufacturing in core process.

• A2 - Transportation: external transportation to the manufacturing plant and internal transport

- A3 Manufacturing:
 - The recycling process of any purchased recycled material and the transport from the recycling process to where the material is used.
 - Manufacturing of the construction product.
 - Packing materials etc. used.
 - Production of ancillary materials or pre-products;

Transport stage:

 \circ A4 – transport of construction products to the building site

> End of life stage

- C2 transport to the treatment site
- C3 waste processing for reuse, recovery or recycling
- C4 final disposal of end-of-life construction product

Benefits and loads beyond the system boundary

• D – Reuse/recovery/recycling potential evaluated as net impacts and benefits

LCA Assumptions

Distribution stage

PARAMETER	Glued laminated timber beam from spruce	Treated glued laminated timber beam from pine
Fuel type and consumption of vehicle or vehicle type used for transport	Average truck trailer with a 16-32t payload Transoceanic container ship for boat trans	l, fuel consumption : 22kg/100km sport
Distance	 Oslo, Norway (70%): 3 km by lorry + 1317 km by container <u>Riga, Latvia (15%):</u> 100 km by lorry <u>Alta, Norway (10%):</u> 80km by lorry + 3070 km by container <u>Ostersund, Sweden (5%):</u> 87 km by lorry + 726 km by container 	 <u>Oslo, Norway (70%):</u> 3 km by lorry + 1317 km by container <u>Alta, Norway (20%):</u> 80km by lorry + 3070 km by container <u>Riga, Latvia (10%):</u> 100 km by lorry
Capacity utilisation (including empty returns)	36% of the capacity in volume % included in the database	
Bulk density of transported products*	440kg/m3	450kg/m3
Volume capacity utilisation factor	1	1

End of life stage

Parameter	Glued laminated timber beam from spruce	Treated glued laminated timber beam from pine
Collection process specified by type	100% collected with mixed construction	waste
Recovery system specified by type	85% incineration with energy recovery	90% incineration with energy recovery
Disposal specified by type	15% incineration without energy recovery	10% incineration without energy recovery
Assumptions for scenario development (e.g. transportation)	 Wood transportation on 400 km Wood sorting and shredding Incineration with energy recovery Sweden and Norway (energy recovery Incineration without energy recovery Latvia (energy recovery < 60% at 	y for waste wood chip incinerated in covery > 60% among PEF data) very for waste wood chip incinerated in mong PEF data)

Module D

This module takes into account the benefits and loads beyond the system boundary. Hence module D included de benefits related to the recovery of thermal and electric energy generated by the wood combustion (with an efficiency of 60%). It allows to replace electricity and heat generation from conventional by way.

Content declaration

Product

Draduct references	Constituent materials							
FIDUUCLIEIEIEICES	Wood	Resin	Paraffin	Glue	Creosote	Tanalith E		
Glued laminated	94,54%	3,25%	0,79%	1,52%	-	-		
timber beam from	During the life cy	cle of this pro	oduct no sub	stance liste	d in the "Cand	lidate List of		
	Substances of Very High Concern (SVHC) for authorization" has been used in a							
001000	percentage higher than 0.1% of the weight of the product.							
Treated alward	90,04%	2,80%	0,68%	1,48%	5,07%	<1%		
I reated glued	During the life cycle of this product one substance listed in the "Candidate List of							
beam from nine	Substances of \	/ery High Co	ncern (SVH	IC) for auti	horization" ha	s been used:		
beam nom pine	creosote (CAS :	8001-58-9), 5	5,07% of the	weight of th	ne product.			

Packaging

<u>Distribution packaging:</u> plastic polyester, iron clips and cardboard 700g of packaging for the glued laminated timber beam from spruce 200g of packaging for the treated glued laminated timber beam from pine

Recycled material

<u>Provenience of recycled materials (pre-consumer or post-consumer) in the product:</u> There is no recycled material on the product.

Environmental performance

The results of the LCIA are relative expressions and does not predict final impact categories, the exceeding of thresholds, safety margins or risks.

Glued laminated timber beam from spruce and pine

Potential environmental impact

PARAMETER	R	UNIT	A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Global	Fossil	kg CO ₂ eq.	2,96E+02	7,27E+00	2,88E+01	1,17E+01	0,00E+00	3,44E+02	-1,30E+02	MND
warming potential	Biogenic	kg CO2 eq.	-6,67E+02	0,00E+00	0,00E+00	6,67E+02	0,00E+00	-2,00E-01	0,00E+00	MND
(GWP)	TOTAL	kg CO2 eq.	-3,71E+02	7,27E+00	2,88E+01	6,79E+02	0,00E+00	3,44E+02	-1,30E+02	MND
Depletion pote stratospheric (ODP)	ential of the ozone layer	kg CFC 11 eq.	3,78E-05	1,23E-06	5,31E-06	9,11E-07	0,00E+00	4,52E-05	-3,38E-06	MND
Acidification p	otential (AP)	kg SO2 eq.	1,59E+00	1,44E-01	9,38E-02	8,23E-02	0,00E+00	1,91E+00	-3,72E-01	MND
Eutrophication	n potential (EP)	kg PO4 ³⁻ eq.	8,54E-01	1,69E-02	2,14E-02	6,53E-02	0,00E+00	9,57E-01	-9,73E-02	MND
Formation pot tropospheric o	tential of ozone (POCP)	kg C₂H₄ eq.	1,29E-01	3,67E-03	3,69E-03	2,71E-03	0,00E+00	1,39E-01	-1,53E-02	MND
Abiotic deplet Elements	ion potential –	kg Sb eq.	4,77E-03	9,77E-05	7,95E-04	1,10E-04	0,00E+00	5,77E-03	-1,11E-03	MND
Abiotic deplet Fossil resourc	ion potential – ces	MJ, net calorific value	5,10E+03	9,79E+01	4,33E+02	1,44E+02	0,00E+00	5,77E+03	-3,87E+02	MND

Use of resources

PARAMETER		UNIT	A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Primary	Use as energy carrier	MJ	4,87E+03	1,02E+00	7,00E+00	6,74E+03	0,00E+00	1,16E+04	-8,31E+02	MND
energy resources – Renewable	Used as raw materials	MJ	6,73E+03	0,00E+00	0,00E+00	-6,73E+03	0,00E+00	-1,00E-01	0,00E+00	MND
	TOTAL	MJ	1,16E+04	1,02E+00	7,00E+00	1,15E+01	0,00E+00	1,16E+04	-8,31E+02	MND
Primary c	Use as energy carrier	MJ	4,67E+03	9,96E+01	4,43E+02	1,57E+02	0,00E+00	5,37E+03	4,43E+02	MND
resources – Non-	Used as raw materials	MJ	8,08E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,08E+02	0,00E+00	MND
renewable	TOTAL	MJ	5,48E+03	9,96E+01	4,43E+02	1,57E+02	0,00E+00	6,18E+03	4,43E+02	MND
Secondary ma	aterial	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Renewable se	condary fuels	MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Non-renewabl fuels	e secondary	MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Net use of free	sh water	m ³	4,29E+00	6,93E-03	4,66E-02	1,26E-01	0,00E+00	4,47E+00	4,66E-02	MND

Waste production and output flows

Waste production

PARAMETER	UNIT	A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Hazardous waste disposed	kg	2,53E-02	1,47E-04	1,16E-03	9,64E-04	0,00E+00	2,75E-02	-8,84E-04	MND
Non-hazardous waste disposed	kg	5,61E+01	1,71E+00	2,11E+01	5,32E+00	0,00E+00	8,42E+01	-1,42E+01	MND
Radioactive waste disposed	kg	3,33E-02	6,89E-04	3,02E-03	5,41E-04	0,00E+00	3,75E-02	-3,47E-03	MND

Output flows

PARAMETER	UNIT	A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Components for reuse	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Material for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Materials for energy recovery	kg	0,00E+00	0,00E+00	0,00E+00	3,74E+02	0,00E+00	3,74E+02	0,00E+00	MND
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	4,02E+03	0,00E+00	4,02E+03	0,00E+00	MND

Treated glued laminated timber beam from pine

Potential environmental impact

PARAMETER		UNIT	A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Global warming	Fossil	kg CO2 eq.	3,74E+02	8,45E+00	2,94E+01	1,02E+01	0,00E+00	4,22E+02	-1,21E+02	MND
	Biogenic	kg CO2 eq.	-5,45E+02	0,00E+00	0,00E+00	5,45E+02	0,00E+00	0,00E+00	0,00E+00	MND
(GWP)	TOTAL	kg CO2 eq.	-1,71E+02	8,45E+00	2,94E+01	5,55E+02	0,00E+00	4,22E+02	-1,21E+02	MND
Depletion potential of the stratospheric ozone layer (ODP)		kg CFC 11 eq.	5,17E-05	1,42E-06	5,43E-06	8,24E-07	0,00E+00	5,94E-05	-3,26E-06	MND
Acidification potential (AP)		kg SO2 eq.	2,06E+00	1,76E-01	9,60E-02	7,82E-02	0,00E+00	2,41E+00	-3,40E-01	MND
Eutrophication potential (EP)		kg PO ₄ ³⁻ eq.	1,03E+00	2,05E-02	2,19E-02	6,42E-02	0,00E+00	1,14E+00	-9,00E-02	MND
Formation potential of tropospheric ozone (POCP)		kg C₂H₄ eq.	1,49E-01	4,48E-03	3,77E-03	2,54E-03	0,00E+00	1,60E-01	-1,37E-02	MND
Abiotic depletion potential – Elements		kg Sb eq.	7,55E-03	1,06E-04	8,13E-04	9,51E-05	0,00E+00	8,56E-03	-1,05E-03	MND
Abiotic depletion potential – Fossil resources		MJ, net calorific value	6,91E+03	1,13E+02	4,43E+02	1,27E+02	0,00E+00	7,59E+03	-3,61E+02	MND

Use of resources

PARAMETER	ARAMETER		A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Primary	Use as energy carrier	MJ	4,40E+03	1,12E+00	7,16E+00	5,51E+03	0,00E+00	9,91E+03	-8,38E+02	MND
energy resources – Renewable	Used as raw materials	MJ	5,50E+03	0,00E+00	0,00E+00	-5,50E+03	0,00E+00	Total without D Total without D D 0,00E+00 9,91E+03 -8,38E+ 0,00E+00 1,00E-01 0,00E+0 0,00E+00 9,91E+03 -8,38E+ 0,00E+00 9,91E+03 -8,38E+ 0,00E+00 9,91E+03 -8,38E+ 0,00E+00 6,97E+03 -4,33E+ 0,00E+00 1,01E+03 0,00E+1 0,00E+00 0,00E+00 0,00E+1	0,00E+00	MND
	TOTAL	MJ	9,90E+03	1,12E+00	7,16E+00	9,78E+00	0,00E+00	9,91E+03	Int D A D3 -8,38E+02 I D1 0,00E+00 I D3 -8,38E+02 I D3 -8,38E+02 I D3 -4,33E+02 I D3 -4,33E+02 I D3 -4,33E+02 I D3 -0,00E+00 I D3 -0,00E+00 I D4 -0,00E+00 I D5 -0,00E+00 I D6 -0,00E+00 I D6 -0,00E+00 I D7 -0,00E+00 I D8 -0,00E+00 I	MND
Primary energy resources – Non- renewable	Use as energy carrier	MJ	6,26E+03	1,15E+02	4,53E+02	1,38E+02	0,00E+00	6,97E+03	-4,33E+02	MND
	Used as raw materials	MJ	1,01E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,01E+03	0,00E+00	MND
	TOTAL	MJ	7,28E+03	1,15E+02	4,53E+02	1,38E+02	0,00E+00	7,98E+03	-4,33E+02	MND
Secondary ma	aterial	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Renewable secondary fuels		MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Non-renewable secondary fuels		MJ, net calorific value	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Net use of fresh water		m ³	4,53E+00	7,68E-03	4,76E-02	1,23E-01	0,00E+00	4,70E+00	-4,38E+00	MND

Waste production and output flows

Waste production

PARAMETER	UNIT	A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Hazardous waste disposed	kg	2,70E-02	1,59E-04	1,19E-03	9,66E-04	0,00E+00	2,93E-02	-8,65E-04	MND
Non-hazardous waste disposed	kg	9,51E+01	1,71E+00	2,16E+01	5,05E+00	0,00E+00	1,23E+02	-1,47E+01	MND
Radioactive waste disposed	kg	4,20E-02	7,96E-04	3,08E-03	4,67E-04	0,00E+00	4,64E-02	-3,42E-03	MND

Output flows

PARAMETER	UNIT	A1-A3	A4	C2	C3	C4	Total without D	D	A5-C1
Components for reuse	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Material for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND
Materials for energy recovery	kg	0,00E+00	0,00E+00	0,00E+00	4,05E+02	0,00E+00	4,05E+02	0,00E+00	MND
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	4,04E+03	0,00E+00	4,04E+03	0,00E+00	MND

References

EIME software, Version 5.9.1 - database : Ecoinvent 3.6 Allocation, cut-off by classification

EIME v5 guides1 2: for the modelling of the different processes

General programme instructions for the international EPD® system (v.2.5)

NF EN 15804+A1: Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction

PCR2012:01 Construction products and construction services V2.33

SUB-PCR TO PCR 2012:01, Wood and wood-based products for use in construction (EN 16485:2014)

NF EN 16485: Round and sawn timber – Environmental Product Declarations – Product category rules for wood and wood-based products for use in construction (2014)

ISO 14040: Environmental management -- Life cycle assessment -- Principles and framework (2006)

ISO 14025: Environmental labels and declarations -- Type III environmental declarations -- Principles and procedures (2006)

LIFE CYCLE ASSESSMENT REPORT, Glued laminated timber beams (2021)

LCA study made by: LCIE Bureau Veritas CODDE department Project management: provided by Bureau Veritas Latvia (<u>riga@lv.bureauveritas.com</u>) Phone: +37167323246

