

Environmental Product Declaration

An EPD should provide current information, and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com. This EPD is compliant with ISO 14025.

Programme: The International EPD® System, www.environdec.com

Programme operator: EPD International AB

N° REG.

S-P-02196

VALIDATED Environmental Product Declaration

CPC CODE 2139 - Other prepared and preserved vegetables, pulses and potatoes

Europe

PUBLICATION DATE 16-11-2020 REVISION DATE 09-01-2024 VALID UNTIL: 22-12-2028

REV.

1.0

1. THE ENVIRONMENTAL PRODUCT DECLARATION

WHAT IS EPD (ENVIRONMENTAL PRODUCT DECLARATION)

The EPD (Environmental Product Declaration) is a document verified and registered that communicates transparent and comparable information about the environmental performance of a product evaluated

along its life cycle.

The Environmental Product Declarations take advantage of new market opportunities to inform consumers and stakeholders about the environmental performance of products and services. The peculiarities of the EPD translate into a series of advantages both for organizations that process declarations and for those who use the information contained in them.

The International EPD[®] System is the program for environmental declarations based on the ISO Standard 14025.

WHAT ARE ITS CHARACTERISTICS

EPD

- **OBJECTIVE.** Environmental performance is calculated using the life cycle analysis methodology (Life Cycle Assessement, LCA), following the ISO 14040 series.
- **CREDIBLE.** The EPD is verified by a third-party body.
- **COMPARABLE.** EPDs belonging to the same product category are comparable since they are developed according to the same rules and requirements (PCR, Product Category Rules).

Can

THE CERTIFICATION OF THE EPD PROCESS OF CONSERVE ITALIA

Conserve Italia has decided to certify the own internal elaboration process of the Environmental Declarations using a reliable and consolidated model of collection,

management and processing of data necessary for the realization of the LCA studies of the products subject to certification.

The Control System implemented by Conserve Italia has been verified by a third-party body, in order to certify that all the Environmental Declarations are performed in accordance with the requirements of the International EPD[®] System. Conserve Italia, having obtained a certification of the process EPD, can independently draw up the Environmental Product Declarations of its products.



2. SWEET CORN

THE INGREDIENTS

Our **sweet corn** is harvested and processed on the same day. The sweet corn vacuum packed is steamed to preserve the sweet flavour and crunchy texture; without the addition of additives.

NUTRITIONAL VALUES Average values per 100g of product							
Energy	83 kcal - 349 kJ						
Protein	2,6 g						
Carbohydrates	12,2 g						
of which sugar	6,3 g						
Fat	1,8 g						
of which saturated	0,4 g						
Fibre	3,9 g						
Salt	0,8 g						

EPD

Can

2,1Kg

CONTENT DECLARATION	Sweet corn (kg)	Salt (kg)	Ascorbic acid (kg)	Water (kg)	Primary Packaging (kg)	Secondary Packaging (kg)	Tertiary Packaging (kg)
REFERRED TO 1 CAN	5,547	0,017	-	0,308	0,271	0,010	0,088
REFERRED TO 1 KG	2,641	0,008	-	0,147	0,129	0,005	0,042

PACKAGING	Container size	Sell unit	Cluster	Pack format
Open top tinplated steel can and lid	2,1 kg	6	3	6X3

3. SWEET CORN

The sweet corn processed by Conserve Italia is all of Italian origin. The raw materials, coming from strictly "No GMO" seeds, are planned and carried out in Emilia-Romagna, in the countries of Piacenza, in Lombardy and in to Cremona and Lodi areas. After harvesting, the cobs are transported to the factory where they are first deprived of the leaves that wrap them and then they are shelled with special machines that preserve the entirety of the grains despite their extreme delicacy. The sweet corn grains are first washed in running water, then pass to the first sorting phase by means of electronic optical reading machines, followed by the manual one with which the residual defective or stained grains are eliminated. Selected and carefully washed corn is canned with the addition of a modest amount of water, salt and a small component of sugar. The boxes are hermetically closed under vacuum packed, i.e. without air inside, and then move on to the sterilization phase in large containers that carry out the so-called "steam cook".

EPD

4. THE PRODUCT

In the field of vegetables, Conserve Italia offers a wide range of products that include: peas, borlotti beans, string beans, sweet corn, chickpeas, lentils, mixed vegetables.

The most important products, such as peas, borlotti beans, string beans and sweet corn are obtained from fresh products, exclusively supplied by the co-operative members and cultivated in an absolutely natural way. The OGM free production, for example, is guaranteed thanks not only to the controls carried out in the

field but also starting from the selection of seeds and the purchases carried out by the Group for the co-operative members. The agricultural planning, from seeding to harvesting, is defined by Conserve Italia's agricultural technicians. They directly monitor the entire lifecycle from cultivation to production. Integrated Pest Management protocols are applied as cultivation defense techniques: potential residual phytopharmaceuticals are always monitored and controlled by Conserve Italia's central laboratories before harvesting.

EPD

Conserve Italia's legal personality is that of an agricultural co-operative and is the mother company to other subsidiary companies in Italy and in Europe.

6. THE MISSION

Conserve Italia represents

the leader industry in the

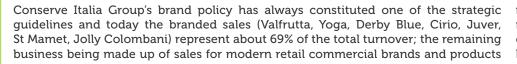
incl. discount A.T.

June 2013).

Juver

Italian field and it is ranked among the leader European companies (Source: Iri Audit The mission statement of Conserve Italia is "to be a leader company in Europe in the sector of preserved foods to achieve the highest value on fruit and vegetables supplied by associated farmers and give to consumers, thanks to food chain control and own brands reliability, guarantees on quality and food safety".

> The Group processes approximately


650.000

tonnes of raw materials every year; fruit, vegetables and tomatoes, grown over a surface area of over

20.000

hectares, which are processed in 12 production plants; 8 in Italy, 3 in France and 1 in Spain.

utta Voga Derby CIRIO

for industry. Conserve Italia has developed a consolidated relationship with all the major retail chains; representing approximately 65% of its turnover. The Ho.Re.Ca. channel (Hotel, Restaurants and Cafés) is also an important channel, especially for beverages as well as for the Foodservice and Vending lines.

Sweet corn

EPD

n

7. THE BRAND CIRIO

ABOUT US

Cirio has been the tomato specialist since 1856: an experience of 160 years that has made it one of the symbolic brands of Italian cuisine. Cirio, since 2004, has been part of the Conserve Italia Group, an Agricultural Cooperative Society whose social base is made up of over

who cultivate in open fields with integrated certified production systems. All the cultivation fields are near the factories where they are processed, packaged and distributed to guarantee their freshness.

Can

OUR CHARACTERISTICS

Cirio uses tomatoes

and controls the entire supply chain; the quality is verified and certified at every stage of sowing, cultivation, processing, production in order to preserve the natural freshness of the harvest. THE PLANTS

Conserve Italia directly manages seven plants in Italy, in Emilia-Romagna, in Tuscany and in Apulia. The plant at Pomposa in Ferrara, which was built between 2002-2004 has an overall surface area of 440,000 sq.m., of which approximately 120,000 covered, and a production capacity for the processing of over 350,000 tonnes of raw materials including tomatoes, vegetables and fruit. The plant is specialized in processing of sieved, chopped and concentrated tomatoes, fruit in syrup and vegetables in cans and glass jars.

The plants of **Barbiano di Cotignola and Massa Lombarda (RA)** are for processing fruit juices, nectars and fruit based drinks.

The Alseno (PC) plant is specialized in vegetables and sweet corn processing. The plants in Ravarino (MO), Albinia (GR) - EMAS - registered site (Reg.n. IT - 000826) - and Mesagne (BR) are dedicated to the production of tomato based products (sieved, chopped, concentrates and sauces).

SWEET CORN – CAN 2,1 KG, object of the study, is produced in the plant Alseno (PC).

8. ENVIRONMENTAL PERFORMANCE DECLARATION

The declared unit is 1 kg of packaged product.

Specific data were collected on the plant for the year 2021. Agricultural data were referred to the three-year average 2019-2021.

SYSTEM BOUNDARIES

METHODOLOGY

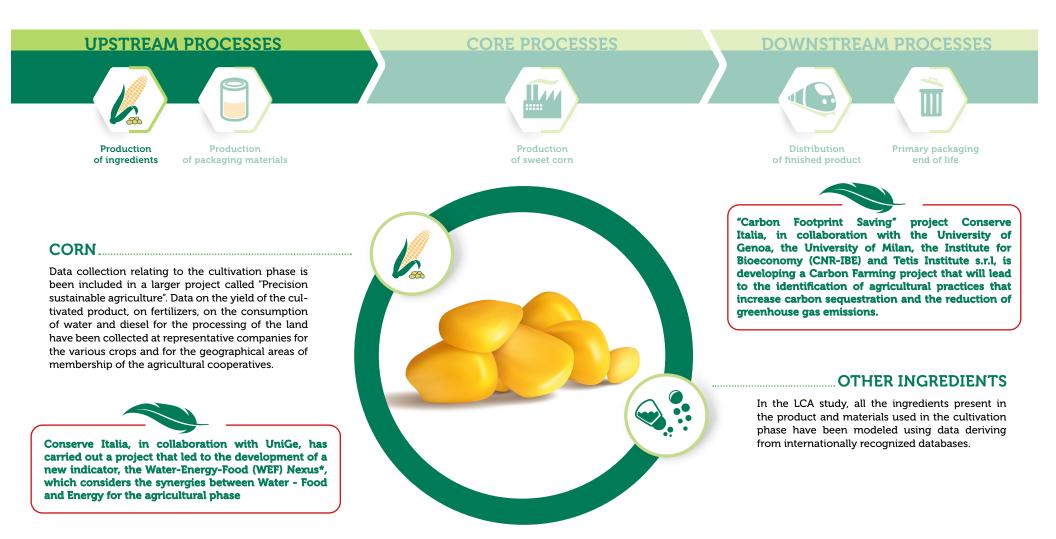
The methodology used in order to evaluate the environmental performance of the product is the Life Cycle Assessment (LCA), according to the ISO 14040-14044 standards. The goal of the LCA study is to evaluate the potential environmental impact associated to the production of SWEET CORN - CAN 2,1 KG tin-plated steel can.

The Water Footprint Profile is calculated in accordance to ISO 14046 standard, through a Water Footprint Assessment integrated in the LCA study.

Air and water emissions caused by the use of nitrogen- and phosphorous-based fertilizers utilized by the system plant and for the cultivating operations have been calculated in accordance to § 4.7.2 of PCR 2019:10 Prepared and preserved vegetable and fruit products, including juice v. 2.0

For the modeling of the electricity used in the processes, the supplier's specific residual mix for the reference year has been used. All life cycle phases were analyzed and accounted for in the study.

This EPD and further information about it are available on the website of the International EPD® System: www.environdec.com



9. PRODUCTION OF INGREDIENTS

*This indicator is not included in the EPD, it is available on request together with the calculation method used.

Can

EPD

10. PRODUCTION OF PACKAGING

PRIMARY PACKAGING

The primary packaging of the products, otherwise the packaging conceived to establish a sales unit at the point of sale for the end user or the consumer, is essentially made up from tinplate, glass, polylaminated or plastic. In the LCA study, the packaging materials were modeled using data from internationally recognized databases.

Conscious of the contribution of the food industry to production of packaging, Conserve Italia is constantly committed to minimize the weight and volume of packaging, by the limits necessary to guarantee the levels of safety, guality and acceptability of the product by the consumer.

Useful link http://www.ilfattoalimentare.it/sostenibilit.html

Conserve Italia has been working for years on the reductions of the weights of primary packaging to reduce its impact environmental with a view to continuous improvement

TERTIARY PACKAGING

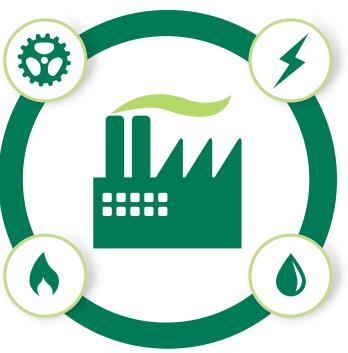
Tertiary packaging, otherwise the packaging conceived in order to facilitate manipulation and transport of the finished product, is chosen by Conserve Italy with sustainability criteria, such as durability, lightness and use of environmentally friendly materials. In particular, the pallets used by Conserve Italia are all multi-use and reusable packaging. Once the reuse is over, these pallets are 100% recyclable.

11. PRODUCTION OF SWEET CORN

PLANTS

The production of the products of the Conserve Italia plants includes the following life cycle stages:

- **1.** Preparation of the finished product (e.g. washing, mixing, heat treatments, ...) from fresh or semi-finished product.
- 2. Packaging process.
- 3. Refrigerated storage (where applicable).


EPD

4. Water purification.

Management data related to the reference year are collected annually at the plants involved and subsequently reported to the processing of the product. Below, the main data collected on the plants involved in the production of products are reported.

GREENHOUSE GASES

Conserve Italia plants fall within the scope of application of the "Emissions Trading" Directive (Directive 2003/87/EC), that is they are subject to the monitoring and communication of the greenhouse gas emissions. The data on CO2 emissions are annually calculated and verified by a body accredited by the Competent National Authority.

ELECTRICITY

The electrical consumption of the plants is one of the significant environmental aspects on which Conserve Italia has decided to act with energy efficiency measures and choosing suppliers that favour certain sources from renewable sources. In particular, all Valfrutta products on the market - fruit preserves (juices and nectars, fruit in syrup and jams), tomato preserves (pureed, pulp, peeled) and vegetable preserves (corn and legumes) - come from plants that for these processing lines use only certified electricity from renewable sources.

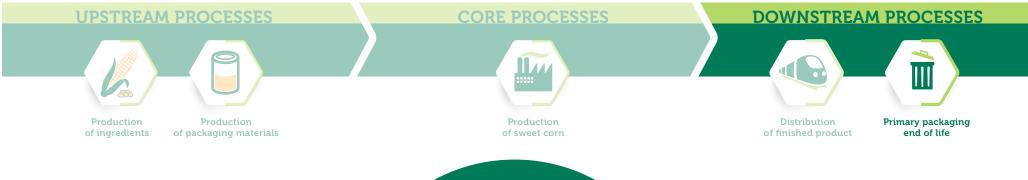
...... WATER

In the Conserve Italia plants, the water resource is considered a primary resource to be protected and preserved. For this reason in all the plants actions and processes for the recovery of water and its purification are implemented. The percentage of water recovered in the production cycle guarantees on average a recovery rate> 33%, including the water resource which is used for the transport of fresh raw material up to the washing and cooking phase.

-

Conserve Italia has created a network of logistic centres dedicated to storage and shipment of finished products, able to ensure quick and cost-saving transfers for the products up to the Distribution Centers of the modern distribution chains or to the distributors of the traditional channels operating in retail and in the Ho.re.ca.. The most important storage and shipping warehouses are highly automated and are placed near the processing plants or in strategic areas for sorting goods at European level.

In addition to traditional road transport, multimodal transport has been developed, with the preparation of 5 special weekly trains, for transport on the lines north-south, which today covers about 20% of shipments, outdoing the national average for rail transport.


EPD

2,1Kg

13. DISPOSAL AND PACKAGING

Conserve Italia uses as primary packaging for its products essentially tinplate, glass, polylaminated or plastic. All packaging used for Conserve Italia product, using materials that fall into the categories treated by CONAI (National Packaging Consortium), are 100% recyclable. CONAI in fact directs the activity and guarantees the results recovery of 6 Consortia of materials: steel (Ricrea), aluminum (Cial), paper/cardboard (Comieco), wood (Rilegno), plastic (Corepla), glass (Coreve).

According to the final data for 2021 published in the General Program for the prevention and management of packaging and packaging waste, the figure relating to packaging sent for recycling amounts to 72% of the amount released for consumption, for a total of 389.828 tons (Source RICREA)

EPD

2,1Kg

14. RESOURCES USE

	PARAMETERS Data refer to 1 kg of product			UPST	REAM	CORE	DOWNSTREAM		
			UNIT	Agriculture ¹	Packaging		Distribution	End of life ²	TOTAL
	Primary	Use as energy carrier	MJ. net calorific value	6,24·10 ⁻²	1,60	4,91·10 ⁻²	7,68·10 -2	4,02·10 ⁻⁶	1,79
	energy resources	Used as raw materials	MJ. net calorific value	4,55·10 ⁻²	3,51 ·10 ⁻¹	2,03·10 ⁻²	1,30·10 -2	2,82·10 -5	4,30·10 ⁻¹
	Renewable	TOTAL	MJ. net calorific value	1,08·10 ⁻¹	1,95	6,94·10 ⁻²	8,99·10 ⁻²	3,22·10 -⁵	2,22
_	Primary	Use as energy carrier	MJ. net calorific value	4,96	9,26	5,73	9,45·10 ⁻¹	1,24·10 -3	2,09.10 1
1	energy resources Non	Used as raw materials	MJ. net calorific value	4,92·10 ⁻⁴	1,11 ·10 ⁻¹	3,24 ·10 ⁻⁶	1,44·10 ⁻⁶	1,55·10 ⁻⁸	1,12.10-1
-	renewable	TOTAL	MJ. net calorific value	4,96	9,37	5,73	9,45·10 ⁻¹	1,24·10 -3	2,10·10 ¹
	Secondary	material ³	kg	0	1,15.10-1	0	0	0	1,15.10-1
_	Renewable sec	ondary fuels	MJ	0	0	0	0	0	0
	Non-renewable secondary fuels		MJ	0	0	0	0	0	0
_	Net use of fr	resh water	m³	2,46.10-1	8,18·10 ⁻³	1,02·10 -2	4,33·10 ⁻⁴	3,36·10 ⁻⁸	2,65·10 ⁻¹

¹ All phases relating to the Upstream are included, with the exception of the production of packaging (production of seeds, plants and agricultural inputs, cultivation phase and production of ingredients).

² Primary packaging end of life.

³ Data refer to the use of recycled cardboard in secondary and tertiary packaging and to the use of 58% recycled tinplate.

15. ENVIRONMENTAL IMPACTS

PARAMETERS Data refer to 1 kg of product		UNIT		UPSTREAM		DOWNS	TOTAL			
Data refer	to I kg of product		Agriculture ¹	Packaging	CORE	Distribution	End of life ²			
	Fossil	kg CO ₂ eq	4,52·10 ⁻¹	7,40 ·10 ⁻¹	3,57·10 ⁻¹	5,07·10 ⁻²	8,45 ·10⁻⁵	1,60		
Global warming	Biogenic	kg CO ₂ eq	1,63·10 ⁻⁴	2,11·10 ⁻³	2,93·10 ⁻⁴	1,57·10 ⁻⁴	6,30·10 ⁻⁸	2,72·10 ⁻³		
potential (GWP)	Land use and land	kg CO ₂ eq	1,53·10 ⁻⁴	6,68·10 ⁻⁴	1,99 ·10 ⁻⁵	5,69 ·10⁻⁵	4,00·10 ⁻⁹	8,98·10 ⁻⁴		
	TOTAL	kg CO ₂ eq	4,53·10 ⁻¹	7,42·10 ⁻¹	3,57·10 ⁻¹	5,09·10 ⁻²	8,46·10 ⁻⁵	1,60		
Ozone deple	Ozone depletion potential (ODP)		1,02·10 ⁻⁷	3,61·10 ⁻⁸	5,04·10⁻ ⁸	7,50·10 ⁻⁹	1,89·10 ⁻¹¹	1,96·10 ⁻⁷		
Acidificat	Acidification potential (AP)		3,70·10 ⁻³	3,96·10 ⁻³	8,86·10 ⁻⁴	3,07·10 ⁻⁴	8,95·10 ⁻⁷	8,85·10 ⁻³		
	Eutrophication potential (EP), Aquatic freshwater		2,01·10 ⁻⁴	3,05 ·10⁻⁵	1,52 ·10⁻⁵	2,62 ·10⁻ ⁶	7,71·10 ⁻¹¹	2,49·10 ⁻⁴		
	Eutrophication potential (EP), Aquatic marine		8,22·10 ⁻³	6,35·10 ⁻⁴	4,15·10 ⁻⁴	8,32·10 ⁻⁵	4,00·10 ⁻⁷	9,35·10 ⁻³		
	Eutrophication potential (EP), Terrestrial		4,93·10 ⁻²	7,31·10 ⁻³	2,24·10 ⁻³	9,21·10 ⁻⁴	4,39·10 ⁻⁶	5,98·10 ⁻²		
	Photochemical oxone creation potential (POCP)				3,02·10 ⁻³	2,48·10 ⁻³	6,62·10 ⁻⁴	2,42·10 ⁻⁴	1,20·10 ⁻⁶	6,40·10 ⁻³
Abiotic depletio	Abiotic depletion potential (fossil fuels)		otic depletion potential (fossil fuels)		4,60	8,80	5,23	8,96·10 ⁻¹	1,17·10 ⁻³	1,95·10 ¹
	Abiotic depletion potential (Metals and minerals)		6,92·10 ⁻⁸	2,25·10⁻⁵	4,29·10 ⁻⁹	2,45·10 ⁻⁹	4,33·10 ⁻¹²	2,25 •10⁻⁵		
Water depriva	ation potential (WDP) ⁴	m ³ word eq depriv.	1,10·10 ¹	3,18·10 ⁻¹	4,72·10 ⁻¹	5,61·10 ⁻³	5,52·10 ⁻⁷	1,18·10 ¹		

¹All phases relating to the Upstream are included, with the exception of the production of packaging (production of seeds, plants and agricultural inputs, cultivation phase and production of ingredients). ² Primary packaging end of life.

⁴ The results of this environmental impact indicator shall be used with care as the uncertainties of the results are high and as there is limited experience with the indicator.

16. WASTE PRODUCTION AND OTHER INDICATORS

PARAMETERS Data refer to 1 kg of product	UNIT	UPST Agriculture ¹	REAM Packaging	CORE	Downs Distribution	End of life ²	TOTAL
Hazardous waste disposed	kg	1,65·10 ⁻⁴	1,14·10 ⁻²	2,08·10 ⁻⁴	7,29·10 -5	2,64·10 ⁻⁸	1,19.10-2
Non-hazardous waste disposed	kg	2,75·10 ⁻³	6,44·10 ⁻¹	1,43·10 ⁻³	7,49·10 ⁻⁴	3,54·10 ⁻²	6,84·10 ⁻¹
Radioactive waste disposed	kg	1,99 ·10 ⁻⁵	2,35·10 ⁻⁵	8,50·10 ⁻⁶	6,53·10 ⁻⁶	8,40·10 ⁻⁹	5,85 •10⁻⁵

		UPST	REAM	CORE	CORE DOWNSTREAM		
PARAMETERS Data refer to 1 kg of product	UNIT		Packaging		Distribution	End of life ²	TOTAL
Components for reuse⁵	kg	0	0	1,40	0	0	1,40
Material for recycling	kg	0	0	0	0	9,11·10 ⁻²	9,11·10 ⁻²
Materials for energy recovery⁵	kg	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0

¹ All phases relating to the Upstream are included, with the exception of the production of packaging (production of seeds, plants and agricultural inputs, cultivation phase and production of ingredients).

² Primary packaging end of life.

⁵ Data refers to by-products used as soil improver and sent to biodigester.

sul en		UPSTREAM		CORE	DOWNSTREAM		
OTHER INDICATORS	UNIT		Packaging		Distribution	End of life ²	TOTAL
Land use (occupation)	m2a	7,29·10 ¹	0	0	0	0	7,29·10 ¹
Ecological footprint	m2a	7,16·10 ⁻¹	2,06	8,86·10 ⁻¹	1,81·10 ⁻¹	2,72·10 ⁻⁴	3,85
WATER FOOTPRINT		UPST Agriculture ¹	'REAM Packaging	CORE	Distribution	STREAM End of life ²	
PROFILE	UNIT					Ì	TOTAL
Human toxicity	kg 1,4-DB eq	5,27·10 ⁻²	1,23·10 ¹	2,82·10 ⁻²	9,19·10 ⁻³	4,89·10 ⁻⁶	1,24·10 ¹
Fresh water aquatic ecotoxicity	kg 1,4-DB eq	4,10·10 ⁻³	1,27·10 ⁻²	3,22·10 ⁻³	3,51·10 ⁻⁴	3,46.10-7	2,04·10 ⁻²
Marine aquatic ecotoxicity	kg 1,4-DB eq	2,50·10 ¹	3,69·10 ²	4,98·10 ¹	1,50·10 ¹	2,35·10 ⁻³	4,59·10 ²
Terrestrial ecotoxicity	kg 1,4-DB eq	9,89·10 ⁻⁴	1,18·10 ⁻²	1,82·10 ⁻⁴	4,08·10 ⁻⁵	1,53·10 ⁻⁸	1,30·10 ⁻²
Acidification potential (AP)	kg SO ₂ eq	8,95·10 ⁻³	3,30·10 ⁻³	7,12·10 ⁻⁴	2,42·10 ⁻⁴	6,36·10 ⁻⁷	1,32·10 ⁻²
Eutrophication potential (EP)	kg PO ₄ ³⁻ eq	5,61·10 ⁻³	3,33·10 ⁻⁴	2,23·10 ⁻⁴	3,86 ·10⁻⁵	1,41.10-7	6,21·10 ⁻³
Net use of fresh water	m ³	2,46·10 ⁻¹	8,18·10 ⁻³	1,02.10-2	4,33·10 ⁻⁴	3,36·10 ⁻⁸	2,65·10 ⁻¹
Water deprivation potential (WDP)	m ³ world eq. deprived	1,10·10 ¹	3,18·10 ⁻¹	4,72·10 ⁻¹	5,61·10 ⁻³	5,52·10 ⁻⁷	1,18·10 ¹

¹ All phases relating to the Upstream are included, with the exception of the production of packaging (production of seeds, plants and agricultural inputs, cultivation phase and production of ingredients).

² Primary packaging end of life.

		UPSTREAM		CORE	DOWNS	DOWNSTREAM	
	UNIT	Agriculture	Packaging	III	Distribution	End of life ²	TOTAL
		la la				Ĩ	
ECOLOGICAL FOOTPRINT	m2a	0,716	2,062	0,886	0,181	<0,001	3,845
CARBON FOOTPRINT	kg CO ₂ eq	0,453	0,742	0,357	0,051	<0,001	1,603
WATER FOOTPRINT ⁶	m ³	0,246	0,008	0,010	<0,001	<0,001	0,265

¹ All phases relating to the Upstream are included, with the exception of the production of packaging (production of seeds, plants and agricultural inputs, cultivation phase and production of ingredients).

² Primary packaging end of life.

⁶ Water footprint profile – Net use of fresh water

17. DIFFERENCES VERSUS PREVIOUS VERSION OF THE EPD

This EPD declaration differs from the previous version mainly due to: adaptation to the new version of PCR 2019:10 (v. 2.0) and GPI 4.0, reference year of the specific data used, and subdivision of the results related to the upstream (agriculture and packaging) and downstream (distribution and end-of-life) phases.

18. INFORMATION

ENERGIA VERDE

RECYCLING OF PRIMARY PACKAGING

The primary packaging is a 100% recyclable material and it has to be directed to the waste separation procedures according to the rules of the pertaining municipalities.

ETHICAL CODE

Conserve Italia, within its activities, adopt the Ethical Code that outlines the basic principles of behavior of the company: pillars that lie on solid foundation of respect of law, honesty, transparency of information, quality and safety of products, responsibility towards community and environment.

PRODUCT CERTIFICATIONS

The product object of the study is in compliance with BRC (British Retail Consortium) and IFS (International Food Standard) standards for safety, legality and quality of products.

Certified and guaranteed by CESI (Centro Elettrotecnico Sperimentale Italiano) for renewable origin, the energy used by Valfrutta processing is **100% renewable energy** as stated by the label present in the packaging of all the products.

ک Conserve l<mark>i</mark>talia

EPD

19. CERTIFICATION BODY

EPD International AB, Box 210 60, SE-100 31 Stockholm, Sweden, E-mail: info@environdec.com

EPDs within the same product category but from different programmes may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison.

Conserve Italia has the sole ownership, liability and responsibility of this EPD.

Product category rules (PCR): Prepared and preserved vegetable and fruit products, including Juice; 2019:10 version 2.0; UN CPC 213, 214

PCR review was conducted by: The Technical Committee of the International EPD® System.

Chair: Adriana Del Borghi Contact via info@environdec.com.

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

X EPD process certification

O EPD verification O Pre-verified tool

Can

Third party verifier: DNV GL Business Assurance Signature of the third-party verifier

Accredited by: ACCREDIA

ACCREDIA Accreditation n.: 008H

The procedure for follow-up during EPD validity, as defined in the GPI, involves third-party verifier:

20. REFERENCES

General Programme instructions for the International EPD[®] System, v.4 PCR 2019:10 v.2.0 UN CPC 213, 214 Prepared and preserved vegetable and fruit products, including juice

ISO 14046:2016 Environmental management – Water Footprint – Principles, requirements and guidelines.

Database Ecoinvent v.3.8 (www.ecoinvent.org)

Life Cycle Analysis "EPD PROCESS LIFE CYCLE ASSESSMENT CONSERVE ITALIA PRODUCTS", Tetis Institute Srl, 2023, Rev.20

COREVE 2021. Glass recycling data 2021

RICREA 2021

<u>COMIECO 2021 (National Consortium for Recovery and Recycling of Cellulose</u> <u>- Based Packaging) "27th Annual Comieco Report on the separate collection of</u> <u>paper and cardboard in Italy"</u>

COREPLA 2021

IRI - Information Resources Srl. Iri Audit incluso discount A.T. june 2013

WATER PROCESS Technical Report "Creation of a model for quantifying the impact on the water sector determined by the cultivation of plant products", Project Measure 16.2, CENS - University of Genoa, 2021, Vers. 1

Website EPD® International System were used (https://www.environdec.com/ resources/indicators); for the Consumption of energy resources the Cumulative Energy Demand (CED) method; for the categories relating to toxicity and ecotoxicity present in the Water Footprint Profile the CML-IA baseline method and for the Ecological Footprint the Ecological footprint method.

drop in pH of soils, lakes, forests, due to air emissions of acidifying compounds, with harmful effects on living organisms, e.g. "acid rains".

ECOLOGICAL FOOTPRINT

the Ecological Footprint is a complex indicator that measures the biologically productive area of the sea and of land necessary to regenerate the resources consumed

by a human population and to absorb the waste produced from the consumption of fossil and nuclear fuels. It is expressed in soil use over time (m2a)

GLOBAL WARMING POTENTIAL (GWP100)

years, due to emissions and absorptions attributable to humans. such as carbon dioxide (CO_2) . methane (CH_4), nitrous oxide (N_2O), etc.

EUTROPHICATION POTENTIAL (EP)

reduction in dissolved oxygen levels in water media with collapse of fish and other aquatic species due to excess addition of large guantities of mineral nutrients such as nitrogen and phosphorous and subsequent dramatic increase in flora that feed on these nutrients.

PHOTOCHEMICAL OZONE CREATION **POTENTIAL (POCP)**

formation of ozone at ground level due to air emissions of unburnt hydrocarbons and nitrogen oxides in presence of solar radiation. This phenomenon is harmful for living organisms and often present in large urban centres.

LAND USE

land use represents an impact on biodiversity. Biodiversity depends on the type of use of soil and dimensions of area. In this impact category both regional and local impacts are taken into consideration and the damage related to land use results from both conversion and occupation of soil. This damage is consequently expressed in m2a: "Land occupation recorded as. m2 times year per unit output".

LIFE CYCLE ASSESSMENT (LCA)

it is a technique - regulated by ISO 14040 standard - to quantify the energetic and environmental load of the life cycle of a product system, through the guantification of energy and material input and air, liquid, solid emissions released into the environment, from raw material extraction to disposal of final waste.

TOXICITY

the toxicity can be expressed as human toxicity, fresh water aquatic ABIOTIC DEPLETION POTENTIAL toxicity, marine aguatic toxicity, terrestrial toxicity. The ETP (Eco-Toxicity Potential) is expressed with reference to a compound, i.e. 1,4-diclorobenzene (1,4 DCB). Therefore the unit is kg 1,4-DB eg.

FUNCTIONAL UNIT

it is a measure of the function of the studied system and it provides a reference to all the results presented in the EPD. This enables comparison of data presented in two or more EPD related to products within the same category, i.e. pertaining to the same PCR.

WATER FOOTPRINT (WF)

it is an indicator to guantify the potential impact related to water, calculated - in accordance to ISO 14046 standard - through a water footprint assessment based on a LCA study. The results of the water footprint assessment are represented by an impact indicators profile (water footprint profile).

WATER DEPRIVATION POTENTIAL (WDP)

Indicator that represents the equivalent volume of water consumed proportionate to the water availability of the individual countries.

WATER ENERGY FOOD (WEF) NEXUS

Dimensionless single score indicator that takes into account the Global Warming Potential (in kg CO₂ eg.), The Water Scarcity (in m³ eg.), The Consumption of energy resources (in MJ) and the Field Yield (in tons / ha). The weighing methodology of the individual indicators defines a weighting of 50% on the agricultural yield (economic-like indicator) and a distribution based on the PEF (Product Environmental Footprint) weighting for the remaining environmental indicators. The indicator is analyzed for the agricultural phase only (1 kg of agricultural product).

ABIOTIC DEPLETION POTENTIAL METALS AND MINERALS

Indicator that measures the impacts associated with the consumption of abiotic (non-living) resources, related to the extraction of minerals and other non-renewable materials, which can lead to the exhaustion of natural resources. It is expressed in kilograms of Antimony (kg Sb eg) equivalent.

FOSSIL FUELS

Indicator that measures the impacts associated with the consumption of fossil fuels and therefore non-renewable resources. For this reason it is guantified in energy terms, in particular in MJ (mega joules).

USE OF RENEWABLE AND NON-RENEWABLE PRIMARY ENERGY RESOURCES

it is a measure of the environmental impacts related to the consumption of primary energy renewable resources (solar, wind, water, geothermal, biomass) and non-renewable (oil, natural gas, coal and fissile materials), used both as an energy carrier and as a raw material.

CARBON FARMING

It consists of implementing better land management practices, resulting in increased carbon seguestration in living biomass, dead organic matter and soil, by improving carbon capture and/ or reducing carbon release to the atmosphere, while respecting ecological principles favorable to biodiversity and natural capital in general.

Sweet corn

Contact persons for the Environmental Product Declaration:

Dr. Pietro Crudele CONSERVE ITALIA SOC. COOP. AGRICOLA E-mail: pcrudele@ccci.it

Prof. Ing Adriana Del Borghi TETIS Institute Srl Spin Off dell'Università di Genova www.tetisinstitute.it E-mail: delborghi@tetisinstitute.it

CONSERVE ITALIA SOC. COOP. AGRICOLA

Legal Seat: Via Paolo Poggi, 11 – 40068 San Lazzaro di Savena (BO) Tel: +39 051 6228311 Fax: +39 051 6228312 E-mail: conserveitalia@ccci.it www.conserveitalia.it Vat nr: 00708311204