Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

DANOPOL PVC WATERPROOFING SHEET

from

DANOSA

Programme: The International EPD® System, <u>www.environdec.com</u>

Programme operator: EPD International AB

EPD registration number: S-P-00691

Publication date: 2015-05-18

Revision date: 2023-05-09 Valid until: 2026-07-25

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration

and publication at www.environdec.com

General information

Programme information

Programme:	The International EPD® System					
	EPD International AB					
Address:	Box 210 60					
Address.	SE-100 31 Stockholm					
	Sweden					
Website:	www.environdec.com					
E-mail:	info@environdec.com					

ISO standard – ISO 21930 and CEN standard EN 15804 serves as the Core Product Category Rules (PCR)
Product category rules (PCR): Construction Products, PCR 2019:14. Version 1.11.
PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact
Independent third-party verification of the declaration and data, according to ISO 14025:2006:
☐ EPD process certification ☒ EPD verification
Third party verifier:
TECNALIA R&I Certificación S.L. Auditor: Cristina Gazulla Santos Accredited by: ENAC. Accreditation no.125/C-PR283
Procedure for follow-up of data during EPD validity involves third party verifier:
⊠ Yes □ No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

Company information

Owner of the EPD: DANOSA

Contact: DANOSA ESPAÑA - +34 949 888 210 - info@danosa.com

DANOSA is a manufacturing company, specialising in integral solutions for sustainable construction. It has been in continuous activity since its foundation in 1964, having evolved through new products and systems, addressing and expanding geographies and supplied markets, with a distribution of sales between national and international markets of 50% respectively. It is considered one of the benchmark companies in the Spanish and European markets, with a global presence in more than 100 countries.

Thanks to this, DANOSA meets the needs of Building and Civil Engineering: asphalt waterproofing, synthetic waterproofing, liquid waterproofing, acoustic insulation, thermal insulation, mortars, drainage, geotextiles and skylights. In recent years, it has been fully involved in the development of innovation and sustainability projects, adapting its solutions to comply with sustainable construction standards, maximising the energy efficiency of buildings. In addition, it has ISO 9001 and ISO 14001 quality and environmental certificates respectively.

Many of its products have Environmental Product Declarations (EPD) and are also integrated in the materials platform of the Green Building Council Spain, which allows them to score in projects with GREEN, LEED and BREEAM certification.

The company has also strengthened its business line dedicated to the recovery of materials and its commitment to the circular economy, which allows it to introduce recycled materials into production processes, enabling these wastes to become useful raw materials for the manufacture of new products.

This document will be used for B2B communication and can be considered global in scope.

<u>Name and location of production site:</u> the declared section Danopol PVC Waterproofing Sheet are produced by DANOSA. The production plant is in:

Poligono Industrial Sector 9 19290 FONTANAR (Guadalajara) Spain.

Product information

Product name: Danopol PVC Waterproofing Sheet of 1,2 mm, 1,5 mm, 1,8 mm of thickness.

<u>Product description</u>: Synthetic sheet based on plasticised PVC, reinforced with different types of supports. Designed for waterproofing flat roofs, tunnels, dams, reservoirs and buried structures.

Danopol PVC Waterproofing Sheet are produced in different format:

- 1. DANOPOL 1.2 MM
 - DANOPOL HS 1.2 LIGHT GREY
 - DANOPOL + HS 1.2 DARK GREY ANTHRACITE
 - DANOPOL HS 1.2 COOL ROOFING
 - DANOPOL FV 1.2 LIGHT GREY
- 2. DANOPOL 1.5 MM
 - DANOPOL HS 1.5 LIGHT GREY
 - DANOPOL + HS 1.5 DARK GREY ANTHRACITE

- DANOPOL HS 1.5 COOL ROOFING
- DANOPOL FV 1.5 LIGHT GREY
- DANOPOL + FV 1.5 DARK GREY ANTHRACITE.
- DANOPOL HSF 1.5 LIGHT GREY
- DANOPOL + HSF 1.5 DARK GREY ANTHRACITE

3. DANOPOL 1.8 MM

- DANOPOL HS 1.8 LIGHT GREY
- DANOPOL + HS 1.8 DARK GREY ANTHRACITE
- DANOPOL HS 1.8 COOL ROOFING
- DANOPOL FV 1.8 LIGHT GREY
- DANOPOL + HSF 1.8 DARK GREY ANTHRACITE

The characteristics and differences of the references are described below:

- DANOPOL HS LIGHT GREY is a synthetic sheet based on plasticised PVC, manufactured by calendering and reinforced with a polyester fibre mesh reinforcement. This film is resistant to weathering and UV rays.
- DANOPOL HS DARK GREY ANTHRACITE is a synthetic film based on plasticised PVC, manufactured by calendering and reinforced with a polyester fibre mesh reinforcement. This film is resistant to weathering, UV rays and microorganisms.
- DANOPOL HS COOL ROOFING is a synthetic film based on white plasticised PVC, manufactured by calendering and reinforced with a polyester fibre mesh reinforcement. This film is resistant to weathering and UV rays, with a high solar reflectance index value.
- DANOPOL FV LIGHT GREY is a synthetic film based on plasticised PVC, manufactured by calendering and reinforced with a glass fibre fleece. This film is resistant to weathering and UV rays.
- DANOPOL+ FV DARK GREY ANTHRACITE is a synthetic film based on plasticised PVC, manufactured by calendering and reinforced with a glass fibre fleece. This film is resistant to weathering, UV rays and microorganisms.
- DANOPOL HSF LIGHT GREY is a synthetic sheet based on plasticized PVC, manufactured by calendering and reinforced with a polyester fibre mesh reinforcement, provided with a 300 gram geotextile on its underside. It has a 6 cm overlap without geotextile, allowing overlapping and welding to the adjacent sheet, guaranteeing watertightness. This sheet is resistant to weathering and UV rays.
- DANOPOL+ HSF DARK GREY ANTHRACITE is a synthetic sheet based on plasticised PVC, manufactured by calendering and reinforced with a polyester fibre mesh reinforcement, provided with a 300 gram geotextile on its underside. It has a 6cm overlap without geotextile, in the right longitudinal area, allowing overlapping and welding to the adjacent sheet, guaranteeing watertightness. This sheet is resistant to weathering, UV rays and microorganisms.

More information about the product is available at: www.danosa.com

UN CPC code: 547 Building completion and finishing services

LCA information

<u>Declared unit:</u> 1 m2 of PVC DANOPOL waterproofing sheet with a weight per reference as shown in the table below

References	Kg/m2
DANOPOL HS 1.2 LIGHT GREY	1.58
DANOPOL + HS 1.2 DARK GREY ANTHRACITE	1.58
DANOPOL HS 1.2 COOL ROOFING	1.66
DANOPOL FV 1.2 LIGHT GREY	1.55
DANOPOL HS 1.5 LIGHT GREY	1.97
DANOPOL + HS 1.5 DARK GREY ANTHRACITE	1.98
DANOPOL HS 1.5COOL ROOFING	2.08
DANOPOL FV 1.5 LIGHT GREY	1.94
DANOPOL + FV 1.5 DARK GREY ANTHRACITE	1.95
DANOPOL HSF 1.5 LIGHT GREY	2.13
DANOPOL + HSF 1.5 DARK GREY ANTHRACITE	2.13
DANOPOL HS 1.8 LIGHT GREY	2.35
DANOPOL + HS 1.8 DARK GREY ANTHRACITE	2.36
DANOPOL HS 1.8 COOL ROOFING	2.48
DANOPOL FV 1.8 LIGHT GREY	2.33
DANOPOL + HSF 1.8 DARK GREY ANTHRACITE	2.51

Reference service life: 35 years – According to British Board of Agrément (BBA) – Approval Inspection Testing Certification.

<u>Time representativeness:</u> primary data from manufacturing site refer to year 2019, and residual electricity mix from Spain in 2018¹

<u>Database(s)</u> and <u>LCA</u> software used: Ecoinvent v3.5 (allocation, cut-off by classification) database and SimaPro 9.1 software have been used for the LCA calculations. LCA methods used are EN 15804:A2 compliant.

<u>Description of system boundaries:</u>

Cradle to grave and module D(A+B+C+D). The modularity and the polluter payer principles have been followed. The next processes have been excluded:

- Flows related to human activities such as employee transport
- The construction of plants, production of machines and transportation systems, as well as maintenance activities.

A1. Raw Material Supply

- Extraction and processing of raw materials (glass veil, polyester mesh, polymer, plasticizer and additives)
- Generation of electricity and heat from primary energy resources
- Processing up to the end-of-waste state or disposal of final residues including any packaging not leaving the factory gate with the product.

¹ https://www.aib-net.org/sites/default/files/assets/facts/residual-mix/2018/AIB_2018_Residual_Mix_Results_v1_1.pdf

DANOPOL's manufacturing process is based on the continuous production of PVC sheets and consists of several stages, such as raw material supply, PVC grouser drying, line supply, PVC extrusion, product forming, cooling, thickness control, shaping and marking, accumulation area, coiler, palletizing and storage.

A2. Transportation

• External transportation to the core processes and internal transport.

A3. Manufacturing

- Manufacturing of the construction product and co-products. Synthetic film based on plasticized PVC, manufactured by calendering and supported with different types of reinforcement.
- Production of ancillary materials or pre-products.
- Treatment of waste generated from the manufacturing processes. Processing up to the end-ofwaste state or disposal of final residues including any packaging not leaving the factory gate with the product.

A4. Transport

• Transportation from the production gate to the construction site

SCENARIO INFORMATION	VALUE/DESCRIPTION
Vehicle type used for transport	Long distance truck
	Transoceanic cargo ship
Vehicle load capacity	Truck: 32 tones
Fuel type and consumption	
	Truck:31,1L/100 km
	Cargo ship:0,0014L/100 TnKm
Distance to construction site	Truck: 1168 km
	Cargo ship: 292km
Capacity utilisation (including empty returns)	>95%
Bulk density of transported products	2,04 Kg/m2 (including packaging)
Volume capacity utilisation factor	1

A5. Construction Installation:

• The product is directly transferred from the truck to the construction site.

SCENARIO INFORMATION	VALUE/DESCRIPTION		
Ancillary materials for installation	Not required		
Water use	Not used		
Other resource use	Not required		
Quantitative description of the energy type and consumption during the preparation and installation process	Not used		
Direct emissions to ambient air, soil and water	No generation		
Waste materials on the building site, generated by the product's installation	Product losses: 5%		
Output materials as result of waste processing at the construction site	Scraps of product: 100% landfill Packaging: 50% landfill and 50% incineration		

B1 - B7. During the stage of use of the products under study (35 years), no material use or energy consumption is required.

C1. Deconstruction/demolition

• The demolition was considered to be without material separation. The impact of the demolition of Danopol PVC Waterproofing Sheet is considered negligible compared to the impact of the demolition of the building as a whole. Therefore, the impact is considered 0.

C2. Transport

• Transportation of the discarded product accounts for part of the waste processing, e.g. to a recycling site and transportation of waste.

C3. Waste processing for reuse, recovery and/or recycling

• It is considered that there is no recycling or reuse at the end of the product's life, because during the demolition of buildings there is no selective separation of materials in the vast majority of cases. Consequently, the impact is considered 0.

C4. Disposal

• Waste disposal including physical pre-treatment and management of the disposal site. Emissions from waste disposal are considered part of the product system under study and therefore part of this module, according to the "polluter pays principle".

SCENARIO INFORMATION	VALUE/DESCRIPTION		
Collection process specified by type	0 Kg collected individually		
	2.18 kg collected with mixed construction waste		
Recovery system specified by type	0 Kg intended for reuse		
	0 Kg intended for recycling		
	0 Kg intended for energy recovery		
Disposal specified by type	2.18 Kg to authotized landfill		
Assumptions for scenario development (e.g.	Lorry of the size class 16-32 metric tons gross and		
transport)	Euro VI emissions class		
	Average load: 5.79 tones		
	Diesel Fuel consumption: 25.5 l/100 Km		
	Distance: 50 km		

Scenarios included in A4-A5 and C1-C4 are currently in use and are representative for one of the most probable alternatives.

D. Reuse-recovery-recycling potential

This product has not considerable benefits due to recycling or/and reuse.

System diagram:

More information:

- The underlying LCA study has been carried out by Marcel Gomez Consultoría Ambiental.
- The study covers at least 95% of the materials and energy per module and at least 99% of the total use of materials and energy of each unit process.
- More information about the product is available at: www.danosa.es

Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation:

	Prod	luct sta	ige	-ct pro	nstru ion cess age	Use stage			End of life stage				Resource recovery stage					
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal		Reuse-Recovery-Recycling- potential
Module	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4		D
Modules declared	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х		х
Geography	ES	ES	ES	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU	EU		EU
Specific data		>90% G	WP-G	HG		-	-	-	-	-	-	-	-	-	-	-	=	-
Variation – products	Variation dec	on of the lared< 1 produ	0% - f	or ead	ducts ch	-	-	-	-	-	-	-	-	-	-	-		-

Content information declared unit

DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%				
Polyester mesh	0.05 – 0.10	0	0				
Polymer	0.50 - 0.80	0	0				
Plasticizer	0.30 - 0.60	0	0				
Additives	0.30 - 0.60	0	0				
Packaging materials	Weight, kg	Weight-% (versus the product)					
Wooden pallets	2,77E-06						
Film PE	3,00E-03	<12%					
Foam base	1,40E-03						

HS 1.2 COOL ROOFING

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%			
Polyester mesh	0.05 – 0.10	0	0			
Polymer	0.50 - 0.80	0	0			
Plasticizer	0.30 - 0.60	0	0			
Additives	0.30 - 0.60	0	0			
Packaging materials	Weight, kg	Weight-% (versus the product)				
Wooden pallets	2,77E-06					
Film PE	3,00E-03	<10%				
Foam base	1,40E-03					

DANOPOL FV 1.2 LIGHT GREY

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%			
Glass veil	0.02 - 0.05	20%	0			
Polyester mesh	0.05 - 0.10	0 0				
Polymer	0.50 - 0.80	0	0			
Plasticizer	0.30 - 0.60	0 0				
Additives	0.30 - 0.60	0 0				
Packaging materials	Weight, kg	Weight-% (versus the product)				
Wooden pallets	2,77E-06					
Film PE	3,00E-03	<6%				
Foam base	1,40E-03					

DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%			
Glass veil	0.00	0	0			
Polyester mesh	0.05 – 0.10	0	0			
Polymer	0.80 - 1.00	0	0			
Plasticizer	0.50 - 0.70	0	0			
Additives	0.30 - 0.60	0	0			
Packaging materials	Weight, kg	Weight-% (versus the product)				
Wooden pallets	3,66E-06					
Film PE	4,00E-03	<12%				
Foam base	1,90E-03					

DANOPOL HS 1.5 COOL ROOFING

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%				
Polyester mesh	0.05 – 0.10	0	0				
Polymer	0.80 - 1.00	0	0				
Plasticizer	0.50 - 0.70	0	0				
Additives	0.30 - 0.60	0	0				
Packaging materials	Weight, kg	Weight-% (versu	s the product)				
Wooden pallets	3,66E-06						
Film PE	4,00E-03	<12%					
Foam base	1,90E-03						

DANOPOL FV 1.5 LIGHT GREY and DANOPOL + FV 1.5 DARK GREY ANTHRACITE.

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%						
Glass veil	0.02 - 0.05	20%	0						
Polyester mesh	0.05 – 0.10	0	0						
Polymer	0.80 - 1.00	0	0						
Plasticizer	0.50 - 0.70	0	0						
Additives	0.30 - 0.60	0	0						
Packaging materials	Weight, kg	Weight-% (versu	s the product)						
Wooden pallets	3,66E-06								
Film PE	4,00E-03	<6%	%						
Foam base	1,90E-03								

DANOPOL HSF 1.5 LIGHT GREY and DANOPOL + HSF 1.5 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Geotextile	0.10 - 0.20	0	0
Polyester mesh	0.05 - 0.10	0	0
Polymer	0.80 – 1.00	0	0
Plasticizer	0.50 - 0.70	0	0
Additives	0.30 - 0.60	0	0
Packaging materials	Weight, kg	Weight-% (versu	is the product)
Wooden pallets	5,30E-06		
Film PE	6,00E-03	<12	%
Roll protector	5,10E-02		

DANOPOL HS 1.8 LIGHT GREY and DANOPOL + HS 1.8 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Polyester mesh	0.05 – 0.10	0	0
Polymer	0.80 - 1.20	0	0
Plasticizer	0.50 - 0.80	0	0
Additives	0.30 - 0.60	0	0
Packaging materials	Weight, kg	Weight-% (versu	is the product)
Wooden pallets	4,25E-06		
Film PE	5,00E-03	<12	%
Foam base	2,10E-03		

DANOPOL HS 1.8 COOL ROOFING

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Polyester mesh	0.05 – 0.10	0	0
Polymer	0.80 - 1.20	0	0
Plasticizer	0.50 - 0.80	0	0
Additives	0.30 - 0.60	0	0
Packaging materials	Weight, kg	Weight-% (versu	s the product)
Wooden pallets	4,25E-06		
Film PE	5,00E-03	<12	%
Foam base	2,10E-03		

DANOPOL FV 1.8 LIGHT GREY

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Glass veil	0.02 - 0.05	20%	0
Polyester mesh	0.05 - 0.10	0	0
Polymer	0.80 - 1.20	0	0
Plasticizer	0.50 - 0.80	0	0
Additives	0.30 - 0.60	0	0
Packaging materials	Weight, kg	Weight-% (versu	s the product)
Wooden pallets	4,25E-06		
Film PE	5,00E-03	<6%	%
Foam base	2,10E-03		

DANOPOL + HSF 1.8 DARK GREY ANTHRACITE

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Geotextile	0.15 – 0.20	0	0
Polyester mesh	0.05 - 0.10	0	0
Polymer	1.40 – 1.60	0	0
Plasticizer	0.80 - 1.00	0	0
Additives	0.30 - 0.60	0	0
Packaging materials	Weight, kg	Weight-% (versu	s the product)
Wooden pallets	6,09E-06		
Film PE	6,00E-03	<12	%
Roll protector	5,90E-02		

During the life cycle of the products no hazardous substance listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorization" has been used in a percentage higher than 0.1% of the weight of the product.

Environmental Information

Since the difference in environmental impact is less than 10% for DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE and HS 1.2 Cool Roofing the following information is valid for the EPD results.

DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE -**HS 1.2 COOL ROOFING**

Potential environmental impact – mandatory indicators according to EN 15804

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are

				Results	per d	eclare	d unit									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	4,38E+0 0	2,10E- 01	1,38E- 01	0	0	0	0	0	0	0	0	5,74E -03	0	9,11E -03	
GWP-biogenic	kg CO ₂ eq.	6,32E- 03	7,18E- 05	1,94E- 04	0	0	0	0	0	0	0	0	1,91E -06	0	7,75E -06	
GWP- luluc	kg CO ₂ eq.	1,69E- 03	5,45E- 05	7,95E- 05	0	0	0	0	0	0	0	0	1,44E -06	0	1,48E -06	
GWP- total	kg CO ₂ eq.	4,39E+0 0	2,10E- 01	1,38E- 01	0	0	0	0	0	0	0	0	5,74E -03	0	9,11E -03	
ODP	kg CFC 11 eq.	2,24E- 07	4,99E- 08	9,17E- 09	0	0	0	0	0	0	0	0	1,37E -09	0	4,52E -09	
АР	mol H ⁺ eq.	2,51E- 02	1,02E- 03	8,35E- 04	0	0	0	0	0	0	0	0	2,42E -05	0	8,97E -05	
EP-freshwater	kg PO4eq	2,87E- 04	8,45E- 06	1,79E- 05	0	0	0	0	0	0	0	0	2,29E -07	0	3,63E -07	
	kg P eq	9,36E- 05	2,75E- 06	5,82E- 06	0	0	0	0	0	0	0	0	7,46E -08	0	1,18E -07	
EP- marine	kg N eq.	3,63E- 03	2,82E- 04	1,37E- 04	0	0	0	0	0	0	0	0	7,05E -06	0	3,26E -05	
EP-terrestrial	mol N eq.	4,38E- 02	3,15E- 03	1,67E- 03	0	0	0	0	0	0	0	0	7,88E -05	0	3,63E -04	
POCP	kg NMVO C eq.	2,77E- 02	9,86E- 04	6,60E- 04	0	0	0	0	0	0	0	0	2,51E -05	0	1,03E -04	
ADP- inerals&metal s*	kg Sb eq.	5,35E- 06	3,80E- 07	2,38E- 06	0	0	0	0	0	0	0	0	1,07E -08	0	9,73E -09	
ADP-fossil*	MJ	9,62E+0 1	3,32E+0 0	2,29E+0 0	0	0	0	0	0	0	0	0	9,10E -02	0	3,01E -01	
WDP	m ³	9,00E+0 0	2,45E- 02	1,20E- 01	0	0	0	0	0	0	0	0	6,75E -04	0	1,27E -03	
Acronyms	Global W Acidificat freshwate EP-terres	sil = Global arming Pote ion potential er end compa strial = Eutro erals&metals	ntial land us , Accumulat artment; EP- phication po	e and land u ed Exceeda marine = Eu otential, Acc	ise cha nce; E trophia umula	ange; P-frescation ted Ex	ODP = hwate poten ceeda	EDepler = El tial, fra ance;	etion putroph action POCP	ootenti ication of nutr = For	al of the poter ients remarks in the potential in the pot	ne strantial, feaching	atospherion raction of ang marine ential of ti	ozone nutrie end c oposp	e layer; A ents reach compartm heric ozo	hi ne or

Potential environmental impact – additional mandatory and voluntary indicators

Results per declared unit																
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
GWP- GHG ²	kg CO ₂ eq.	4,27E+ 00	2,08E- 01	1,35E- 01	0	0	0	0	0	0	0	0	5,69E- 03	0	8,97E- 03	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

				R	esults	per de	clared	unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
PERE	MJ	4,75E+00	3,63E-02	2,80E-01	0	0	0	0	0	0	0	0	9,63E- 04	0	3,95E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	4,75E+00	3,63E-02	2,80E-01	0	0	0	0	0	0	0	0	9,63E- 04	0	3,95E- 03	0
PENRE	MJ	9,62E+01	3,32E+00	2,29E+00	0	0	0	0	0	0	0	0	9,10E- 02	0	3,01E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	9,62E+01	3,32E+00	2,29E+00	0	0	0	0	0	0	0	0	9,10E- 02	0	3,01E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	5,34E+00	1,77E-01	2,35E+00	0	0	0	0	0	0	0	0	4,68E- 03	0	1,75E- 02	0
Acronyms	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water															

² The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

	Results per declared unit															
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Hazardous waste disposed	kg	2,21E-05	1,92E- 06	2,66E- 06	0	0	0	0	0	0	0	0	5,27E- 08	0	1,03E-07	0
Non- hazardous waste disposed	kg	4,48E-01	2,75E- 01	1,30E- 01	0	0	0	0	0	0	0	0	7,74E- 03	0	2,11E+00	0
Radioactive waste disposed	kg	9,94E-05	2,25E- 05	6,41E- 06	0	0	0	0	0	0	0	0	6,18E- 07	0	2,06E-06	0

Output flows

					Re	sults pe	r declar	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	2,77E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	4,40E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results per declared unit										
BIOGENIC CARBON CONTENT Unit QUANTITY										
Biogenic carbon content in product	kg C	0,00E+00								
Biogenic carbon content in packaging	kg C	2,77E-06								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 89,6%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 4,7% and 5,1% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,4% respectively of the whole impact. The life cycle has an impact of 4,75 kg of CO2 equivalent.

Results on impact categories

Environmental Information

DANOPOL FV 1.2 LIGHT GREY

Potential environmental impact – mandatory indicators according to EN 15804

				Results	s per d	leclare	d unit									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	3,97E+0 0	2,03E- 01	1,31E- 01	0	0	0	0	0	0	0	0	5,56E -03	0	8,82E -03	
SWP-biogenic	kg CO ₂ eq.	5,80E- 03	6,94E- 05	1,89E- 04	0	0	0	0	0	0	0	0	1,86E -06	0	7,51E -06	
GWP- luluc	kg CO ₂ eq.	1,46E- 03	5,27E- 05	7,64E- 05	0	0	0	0	0	0	0	0	1,40E -06	0	1,43E -06	
GWP- total	kg CO ₂ eq.	3,97E+0 0	2,03E- 01	1,31E- 01	0	0	0	0	0	0	0	0	5,56E -03	0	8,83E -03	
ODP	kg CFC 11 eq.	1,66E- 07	4,83E- 08	8,29E- 09	0	0	0	0	0	0	0	0	1,33E -09	0	4,38E -09	
АР	mol H ⁺ eq.	2,39E- 02	9,86E- 04	8,07E- 04	0	0	0	0	0	0	0	0	2,34E -05	0	8,69E -05	
P-freshwater	kg PO ₄ eq.	2,20E- 04	8,17E- 06	1,70E- 05	0	0	0	0	0	0	0	0	2,22E -07	0	3,50E -07	
	kg P eq	7,16E- 05	2,66E- 06	5,55E- 06	0	0	0	0	0	0	0	0	7,23E -08	0	1,14E -07	
EP- marine	kg N eq.	3,47E- 03	2,73E- 04	1,32E- 04	0	0	0	0	0	0	0	0	6,83E -06	0	3,15E -05	
EP-terrestrial	mol N eq.	4,18E- 02	3,05E- 03	1,62E- 03	0	0	0	0	0	0	0	0	7,63E -05	0	3,52E -04	
РОСР	kg NMVO C eq.	2,73E- 02	9,53E- 04	6,38E- 04	0	0	0	0	0	0	0	0	2,44E -05	0	1,00E -04	
ADP- inerals&metal s*	kg Sb eq.	3,92E- 06	3,67E- 07	2,36E- 06	0	0	0	0	0	0	0	0	1,03E -08	0	9,43E -09	
ADP-fossil*	MJ	9,03E+0 1	3,21E+0 0	2,17E+0 0	0	0	0	0	0	0	0	0	8,82E -02	0	2,92E -01	
WDP	m ³	9,01E+0 0	2,37E- 02	1,16E- 01	0	0	0	0	0	0	0	0	6,54E -04	0	1,23E -03	
Acronyms	Global W Acidificat freshwate EP-terres	sil = Global arming Pote ion potential er end compa strial = Eutro erals&metals	ntial land us , Accumulat artment; EP- phication po	e and land ued Exceeda marine = Euptential, Acc	ise ch nce; E itrophi umula	ange; P-frescation ted Ex	ODP = shwate poten ceeda	= Depl er = Eu tial, fra	etion p utroph action (ootenti ication of nutr	al of the potential in	he strantial, freachir	atospheric raction of ng marine ential of tr	ozon nutrie end c oposp	e layer; A ents reacl compartm oheric ozo	۹F hi

PAGE 18/48

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	leclare	d unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
GWP- GHG ³	kg CO ₂ eq.	3,86E+00	2,01E- 01	1,28E- 01	0	0	0	0	0	0	0	0	5,51E- 03	0	8,69E- 03	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					Result	ts per	declare	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	4,48E+00	3,51E-02	2,76E-01	0	0	0	0	0	0	0	0	9,33E- 04	0	3,82E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	4,48E+00	3,51E-02	2,76E-01	0	0	0	0	0	0	0	0	9,33E- 04	0	3,82E- 03	0
PENRE	MJ	9,03E+01	3,21E+00	2,17E+00	0	0	0	0	0	0	0	0	8,82E- 02	0	2,92E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	9,03E+0	3,21E+00	2,17E+00	0	0	0	0	0	0	0	0	8,82E- 02	0	2,92E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	4,42E+00	1,71E-01	2,33E+00	0	0	0	0	0	0	0	0	4,54E- 03	0	1,70E- 02	0
Acronyms	of ren = Use Use o source	E = Use of renewable primare of non-renewables; SM = Use FW = Use of renewables.	y energy rest vable primar ole primary e of secondar	ources used y energy exe nergy resou y material; F	as rav cluding rces us	w mate g non-i sed as	rials; F enewa raw m	PERT = lble pr aterial	= Total imary s; PEN	use of energy NRT =	renew resou Total u	rable purces under the recognition in the recogniti	rimary en ised as ra non-renew	ergy re aw mat vable p	esources; terials; PE rimary en	PENRE NRM = ergy re-

³ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

					Re	sults p	er dec	lared (unit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste disposed	kg	5,75E-06	1,86E- 06	2,59E- 06	0	0	0	0	0	0	0	0	5,11E-08	0	9,97E-08	0
Non- hazardous waste disposed	kg	1,88E-01	2,65E- 01	1,28E- 01	0	0	0	0	0	0	0	0	7,49E-03	0	2,04E+00	0
Radioactive waste disposed	kg	5,43E-05	2,18E- 05	6,17E- 06	0	0	0	0	0	0	0	0	5,99E-07	0	2,00E-06	0

Output flows

					F	Results p	er decla	ared uni	t							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	1,75E- 01	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,50E- 06	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

or declared unit	
ei deciared uriit	
Unit	QUANTITY
	0.005.00
kg C	0,00E+00
ka C	2,77E-06
	er declared unit Unit kg C kg C

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 88,4%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 5,2% and 5,8% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,4% respectively of the whole impact. The life cycle has an impact of 4,32 kg of CO2 equivalent.

Results on impact categories

Environmental Information

Since the difference in environmental impact is less than 10% for DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE - HS 1.5 COOL ROOFING the following information is valid for the EPD results

DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE - HS 1.5 COOL ROOFING

Potential environmental impact – mandatory indicators according to EN 15804

				Results	pei c	leciale	u unii									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	5,37E+0 0	2,60E- 01	1,46E- 01	0	0	0	0	0	0	0	0	7,77E -03	0	1,23E -02	
GWP-biogenic	kg CO ₂ eq.	7,75E- 03	8,88E- 05	2,03E- 04	0	0	0	0	0	0	0	0	2,59E -06	0	1,05E -05	
GWP- luluc	kg CO ₂ eq.	2,05E- 03	6,75E- 05	8,21E- 05	0	0	0	0	0	0	0	0	1,95E -06	0	2,00E -06	
GWP- total	kg CO ₂ eq.	5,38E+0 0	2,60E- 01	1,46E- 01	0	0	0	0	0	0	0	0	7,78E -03	0	1,23E -02	
ODP	kg CFC 11 eq.	2,64E- 07	6,18E- 08	9,59E- 09	0	0	0	0	0	0	0	0	1,86E -09	0	6,12E -09	
AP	mol H ⁺ eq.	3,10E- 02	1,26E- 03	8,74E- 04	0	0	0	0	0	0	0	0	3,28E -05	0	1,21E -04	
EP-freshwater	kg PO4 eq.	3,40E- 04	1,05E- 05	1,81E- 05	0	0	0	0	0	0	0	0	3,10E -07	0	4,91E -07	
	kg P eq	1,11E- 04	3,41E- 06	5,90E- 06	0	0	0	0	0	0	0	0	1,01E -07	0	1,60E -07	
EP- marine	kg N eq.	4,49E- 03	3,49E- 04	1,44E- 04	0	0	0	0	0	0	0	0	9,55E -06	0	4,41E -05	
EP-terrestrial	mol N eq.	5,40E- 02	3,90E- 03	1,76E- 03	0	0	0	0	0	0	0	0	1,07E -04	0	4,92E -04	
POCP	kg NMVO C eq.	3,46E- 02	1,22E- 03	7,13E- 04	0	0	0	0	0	0	0	0	3,40E -05	0	1,40E -04	
ADP- ninerals&metal s*	kg Sb eq.	6,26E- 06	4,70E- 07	2,38E- 06	0	0	0	0	0	0	0	0	1,44E -08	0	1,32E -08	
ADP-fossil*	MJ	1,19E+0 2	4,11E+0 0	2,47E+0 0	0	0	0	0	0	0	0	0	1,23E -01	0	4,08E -01	
WDP	m ³	1,13E+0 1	3,04E- 02	1,39E- 01	0	0	0	0	0	0	0	0	9,14E -04	0	1,72E -03	
Acronyms	Global W Acidificat freshwate EP-terres ADP-min	sil = Global 'arming Pote ion potential er end compa strial = Eutro erals&metals s potential; V	ntial land us, Accumulat artment; EP- phication pose = Abiotic	e and land ued Exceeda marine = Euptential, Accordepletion p	ise ch nce; E trophi umula otentia	ange; EP-fres cation ted Ex al for	ODP = shwate poten ceeda non-fo	= Depler = Eutial, fra ance; lossil re	etion putroph action POCP esource	ootenti ication of nutr = For ces; A	al of the potentients remation DP-fo	ne strantial, freaching n pote ssil =	atospheric raction of ng marine ential of tr Abiotic of	ozon nutrie end c oposp depleti	e layer; A ents reach compartm cheric ozo	hi e or

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per c	declare	d unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
GWP- GHG⁴	kg CO ₂ eq.	5,22E+00	2,57E- 01	1,43E- 01	0	0	0	0	0	0	0	0	7,70E- 03	0	1,22E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					Resul	ts per	declar	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	6,07E+00	4,49E-02	2,84E-01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	6,07E+00	4,49E-02	2,84E-01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E- 03	0
PENRE	MJ	1,19E+02	4,11E+00	2,50E+00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,19E+02	4,11E+00	2,50E+00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m³	6,36E+00	2,19E-01	2,35E+00	0	0	0	0	0	0	0	0	6,34E- 03	0	2,37E- 02	0
Acronyms	of rendered	= Use of rene ewable primar of non-renewable f non-renewables; SM = Use FW = Use of r	y energy restrable primary ele primary ele of secondar	sources used y energy exenergy resoury y material; F	l as rav cludino rces u	w mate g non-i sed as	rials; F enewa raw m	PERT = able pr aterial	= Ťotal imary s; PEN	use of energy NRT =	renew resou Total u	vable purces under the purces of the purces	rimary en used as ra non-renev	ergy re aw ma vable p	esources; terials; PE orimary en	PENRE ENRM = ergy re-

⁴ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

					Re	sults p	er dec	lared ı	unit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2,61E-05	2,38E- 06	2,69E- 06	0	0	0	0	0	0	0	0	7,14E-08	0	1,39E-07	0
Non- hazardous waste disposed	kg	5,49E-01	3,40E- 01	1,39E- 01	0	0	0	0	0	0	0	0	7,80E-06	0	1,05E-05	0
Radioactive waste disposed	kg	1,21E-04	2,79E- 05	6,62E- 06	0	0	0	0	0	0	0	0	8,38E-07	0	2,79E-06	0

Output flows

					Re	sults pe	r declar	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	3,66E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	5,90E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results p	er declared unit										
BIOGENIC CARBON CONTENT Unit QUANTITY											
Biogenic carbon content in product	kg C	0,00E+00									
Biogenic carbon content in packaging	kg C	3,66E-06									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 90,08% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 4,86% and 4,50% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,14% and 0,42% respectively of the whole impact. The life cycle has an impact of 5,81 kg of CO2 equivalent.

Results on impact categories

Environmental Information

DANOPOL FV 1.5 LIGHT GREY and DANOPOL + FV 1.5 DARK GREY ANTHRACITE. Potential environmental impact – mandatory indicators according to EN 15804

		T . 4 4 4			_	_	_	_	_	_	_	_		_		
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	4,86E+0 0	2,53E- 01	1,31E- 01	0	0	0	0	0	0	0	0	7,59E -03	0	1,20E -02	
GWP-biogenic	kg CO ₂ eq.	7,09E- 03	8,64E- 05	1,89E- 04	0	0	0	0	0	0	0	0	2,53E -06	0	1,03E -05	
GWP- luluc	kg CO ₂ eq.	1,77E- 03	6,57E- 05	7,64E- 05	0	0	0	0	0	0	0	0	1,91E -06	0	1,95E -06	
GWP- total	kg CO ₂ eq.	4,87E+0 0	2,53E- 01	1,31E- 01	0	0	0	0	0	0	0	0	7,60E -03	0	1,21E -02	
ODP	kg CFC 11 eq.	1,99E- 07	6,01E- 08	8,28E- 09	0	0	0	0	0	0	0	0	1,82E -09	0	5,98E -09	
АР	mol H ⁺ eq.	2,96E- 02	1,23E- 03	8,07E- 04	0	0	0	0	0	0	0	0	3,20E -05	0	1,19E -04	
EP-freshwater	kg PO ₄ eq.	2,56E- 04	1,02E- 05	1,70E- 05	0	0	0	0	0	0	0	0	3,03E -07	0	4,80E -07	
	kg P eq	8,34E- 05	3,32E- 06	5,55E- 06	0	0	0	0	0	0	0	0	9,87E -08	0	1,56E -07	
EP- marine	kg N eq.	4,28E- 03	3,39E- 04	1,32E- 04	0	0	0	0	0	0	0	0	9,33E -06	0	4,31E -05	
EP-terrestrial	mol N eq.	5,15E- 02	3,80E- 03	1,62E- 03	0	0	0	0	0	0	0	0	1,04E -04	0	4,81E -04	
POCP	kg NMVO C eq.	3,40E- 02	1,19E- 03	6,38E- 04	0	0	0	0	0	0	0	0	3,33E -05	0	1,37E -04	
ADP- inerals&metal s*	kg Sb eq.	4,38E- 06	4,57E- 07	2,36E- 06	0	0	0	0	0	0	0	0	1,41E -08	0	1,29E -08	
ADP-fossil*	MJ	1,12E+0 2	4,00E+0 0	2,17E+0 0	0	0	0	0	0	0	0	0	1,20E -01	0	3,98E -01	
WDP	m ³	1,13E+0 1	2,95E- 02	1,16E- 01	0	0	0	0	0	0	0	0	8,93E -04	0	1,68E -03	

Acronyms

GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	leclare	d unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
GWP- GHG⁵	kg CO ₂ eq.	4,74E+00	2,51E- 01	1,28E- 01	0	0	0	0	0	0	0	0	7,53E-03	0	1,19E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					Resul	ts per	declar	ed unit								
ndicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
PERE	MJ	5,70E+00	4,37E-02	2,76E-01	0	0	0	0	0	0	0	0	1,27E- 03	0	5,22E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	5,70E+00	4,37E-02	2,76E-01	0	0	0	0	0	0	0	0	1,27E- 03	0	5,22E- 03	C
PENRE	MJ	1,12E+02	4,00E+00	2,17E+00	0	0	0	0	0	0	0	0	1,20E- 01	0	3,98E- 01	(
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
PENRT	MJ	1,12E+02	4,00E+00	2,17E+00	0	0	0	0	0	0	0	0	1,20E- 01	0	3,98E- 01	(
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
FW	m ³	5,05E+00	2,13E-01	2,33E+00	0	0	0	0	0	0	0	0	6,30E- 03	0	2,32E- 02	(
cronyms	of rend = Use Use of source	= Use of renewable primare of non-renewables; SM = Use FW = Use of I	y energy restrable primary energy restrains of secondar	sources used y energy ex energy resou ry material; F	d as rav cludino rces u	w mate g non- sed as	erials; F renewa raw m	PERT = able pr aterial	= Total imary s; PEN	use of energy NRT =	renev resou Total u	vable purces under the purces of the purces	rimary en used as ra non-renev	ergy re aw ma vable p	esources; terials; PE orimary en	PENI NRM ergy

⁵ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

					Re	sults p	er dec	lared (unit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Hazardous waste disposed	kg	2,02E-05	2,32E- 06	2,59E- 06	0	0	0	0	0	0	0	0	6,97E-08	0	1,36E-07	0
Non- hazardous waste disposed	kg	5,22E-01	3,31E- 01	1,28E- 01	0	0	0	0	0	0	0	0	1,02E-02	0	2,79E+00	0
Radioactive waste disposed	kg	1,09E-04	2,71E- 05	6,17E- 06	0	0	0	0	0	0	0	0	8,18E-07	0	2,73E-06	0

Output flows

					Res	ults p	er de	clared	l unit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0	0	3,66E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	5,90E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	МЈ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	МЈ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results po	er declared unit										
BIOGENIC CARBON CONTENT Unit QUANTITY											
Biogenic carbon content in product	kg C	0,00E+00									
Biogenic carbon content in packaging	kg C	3,66E-06									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 88,9% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 5,4% and 5,0% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,2% and 0,5% respectively of the whole impact. The life cycle has an impact of 5,27 kg of CO2 equivalent.

Results on impact categories

Environmental Information

Since the difference in environmental impact is less than 10% for DANOPOL HSF 1.5 Light Grey - DANOPOL + HSF 1.5 DARK GREY ANTHRACITE the following information is valid for the EPD results

DANOPOL HSF 1.5 Light Grey - DANOPOL + HSF 1.5 DARK GREY ANTHRACITE Potential environmental impact – mandatory indicators according to EN 15804

				Results	per d	eclare	d unit									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	6,62E+0 0	2,60E- 01	1,46E- 01	0	0	0	0	0	0	0	0	7,77E -03	0	1,23E -02	
GWP-biogenic	kg CO ₂ eq.	1,05E- 02	8,88E- 05	2,03E- 04	0	0	0	0	0	0	0	0	2,59E -06	0	1,05E -05	
GWP- luluc	kg CO ₂ eq.	2,54E- 03	6,75E- 05	8,21E- 05	0	0	0	0	0	0	0	0	1,95E -06	0	2,00E -06	
GWP- total	kg CO ₂ eq.	6,63E+0 0	2,60E- 01	1,46E- 01	0	0	0	0	0	0	0	0	7,78E -03	0	1,23E -02	
ODP	kg CFC 11 eq.	3,82E- 07	6,18E- 08	9,59E- 09	0	0	0	0	0	0	0	0	1,86E -09	0	6,12E -09	
АР	mol H ⁺ eq.	3,60E- 02	1,26E- 03	8,74E- 04	0	0	0	0	0	0	0	0	3,28E -05	0	1,21E -04	
EP-freshwater	kg PO ₄ eq.	4,89E- 04	1,05E- 05	1,81E- 05	0	0	0	0	0	0	0	0	3,10E -07	0	4,91E -07	
	kg P eq	1,59E- 04	3,41E- 06	5,90E- 06	0	0	0	0	0	0	0	0	1,01E -07	0	1,60E -07	
EP- marine	kg N eq.	5,28E- 03	3,49E- 04	1,44E- 04	0	0	0	0	0	0	0	0	9,55E -06	0	4,41E -05	
EP-terrestrial	mol N eq.	6,33E- 02	3,90E- 03	1,76E- 03	0	0	0	0	0	0	0	0	1,07E -04	0	4,92E -04	
РОСР	kg NMVO C eq.	3,84E- 02	1,22E- 03	7,13E- 04	0	0	0	0	0	0	0	0	3,40E -05	0	1,40E -04	
ADP- inerals&metal s*	kg Sb eq.	9,43E- 06	4,70E- 07	2,38E- 06	0	0	0	0	0	0	0	0	1,44E -08	0	1,32E -08	
ADP-fossil*	MJ	1,41E+0 2	4,11E+0 0	2,47E+0 0	0	0	0	0	0	0	0	0	1,23E -01	0	4,08E -01	
WDP	m ³	1,21E+0 1	3,04E- 02	1,39E- 01	0	0	0	0	0	0	0	0	9,14E -04	0	1,72E -03	

Acronyms

Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	leclare	d unit								
Indicator	Unit	Tot.A1- A3	A4	A 5	В1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP- GHG ⁶	kg CO ₂ eq.	5,23E+00	2,57E- 01	1,43E- 01	0	0	0	0	0	0	0	0	7,70E-03	0	1,22E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					Resu	lts per	decla	ed uni	t							
Indicator	Unit	Tot.A1- A3	A 4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	3,11E+00	4,49E-02	2,84E-01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	3,11E+00	4,49E-02	2,84E-01	0	0	0	0	0	0	0	0	1,30E- 03	0	5,35E- 03	0
PENRE	MJ	1,34E+02	4,11E+00	2,50E+00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
PENRT	MJ	1,34E+02	4,11E+00	2,50E+00	0	0	0	0	0	0	0	0	1,23E- 01	0	4,08E- 01	(
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
FW	m ³	3,13E+00	2,19E-01	2,35E+00	0	0	0	0	0	0	0	0	6,34E- 03	0	2,37E- 02	(
cronyms	of rend = Use Use o	= Use of rerewable prima of non-renewa f non-renewa es; SM = Use	ry energy re wable prima ble primary	sources use ry energy ex energy reso	d as ra ccludin urces u	w mate g non- used as	erials; renew s raw r	PERT able p nateria	= Ťota rimary ls; PE	l use o energ NRT =	f renev y reso Total	vable purces urces use of	orimary er used as r non-rene	nergy r aw ma wable	esources; aterials; Pt primary er	PENI ENRI nergy

fuels; FW = Use of net fresh water

⁶ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

					Re	sults p	er dec	lared ı	unit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Hazardous waste disposed	kg	1,38E-05	2,38E- 06	2,69E- 06	0	0	0	0	0	0	0	0	7,14E-08	0	1,39E-07	0
Non- hazardous waste disposed	kg	3,37E-03	2,59E- 04	1,28E- 03	0	0	0	0	0	0	0	0	7,80E-06	0	1,05E-05	0
Radioactive waste disposed	kg	9,08E-05	2,79E- 05	6,64E- 06	0	0	0	0	0	0	0	0	8,38E-07	0	2,79E-06	0

Output flows

					F	Results p	er decla	ared uni	t							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	1,75E- 01	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,50E- 06	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results po	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	5,30E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1-A3 module has the biggest impact, representing at least 92% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 3,9% and 3,5% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,3% respectively of the whole impact. The life cycle has an impact of 7,05 kg of CO2 equivalent.

Results on impact categories

Environmental Information

Since the difference in environmental impact is less than 10% DANOPOL HS 1.8 LIGHT GREY y DANOPOL + HS 1.8 DARK GREY ANTHRACITE- HS 1.8 Cool Roofing the following information is valid for the EPD results

DANOPOL HS 1.8 LIGHT GREY and DANOPOL + HS 1.8 DARK GREY ANTHRACITE-DANOPOL HS 1.8 COOL ROOFING

Potential environmental impact – mandatory indicators according to EN 15804

				Result	s per c	declare	ed unit									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	6,29E+0 0	8,54E- 01	1,75E- 01	0	0	0	0	0	0	0	0	1,05E -02	0	1,67E -02	
GWP-biogenic	kg CO ₂ eq.	8,60E- 03	3,29E- 04	2,29E- 04	0	0	0	0	0	0	0	0	3,51E -06	0	1,42E -05	
GWP- luluc	kg CO ₂ eq.	1,97E- 03	2,60E- 04	9,03E- 05	0	0	0	0	0	0	0	0	2,64E -06	0	2,71E -06	
GWP- total	kg CO ₂ eq.	6,30E+0 0	8,55E- 01	1,76E- 01	0	0	0	0	0	0	0	0	1,05E -02	0	1,67E -02	
ODP	kg CFC 11 eq.	3,05E- 07	1,97E- 07	1,24E- 08	0	0	0	0	0	0	0	0	2,52E -09	0	8,28E -09	
АР	mol H ⁺ eq.	3,62E- 02	7,04E- 03	1,07E- 03	0	0	0	0	0	0	0	0	4,43E -05	0	1,64E -04	
EP-freshwater	kg PO ₄ eq.	3,73E- 04	3,60E- 05	2,02E- 05	0	0	0	0	0	0	0	0	4,20E -07	0	6,65E -07	
	kg P eq	1,21E- 04	1,17E- 05	6,58E- 06	0	0	0	0	0	0	0	0	1,37E -07	0	2,17E -07	
EP- marine	kg N eq.	5,26E- 03	1,66E- 03	1,80E- 04	0	0	0	0	0	0	0	0	1,29E -05	0	5,97E -05	
EP-terrestrial	mol N eq.	6,28E- 02	1,86E- 02	2,18E- 03	0	0	0	0	0	0	0	0	1,44E -04	0	6,66E -04	
POCP	kg NMVO C eq.	4,11E- 02	5,43E- 03	8,98E- 04	0	0	0	0	0	0	0	0	4,61E -05	0	1,89E -04	
ADP- ninerals&metal s*	kg Sb eq.	7,14E- 06	1,32E- 06	2,63E- 06	0	0	0	0	0	0	0	0	1,95E -08	0	1,78E -08	
ADP-fossil*	MJ	1,40E+0 2	1,33E+0 1	3,03E+0 0	0	0	0	0	0	0	0	0	1,67E -01	0	5,52E -01	
WDP	m ³	1,35E+0 1	9,65E- 02	1,76E- 01	0	0	0	0	0	0	0	0	1,24E -03	0	2,33E -03	
Acronyms	Global W = Acidification freshwate EP-terres ADP-mine	arming Pote ation potent er end comp trial = Eutro erals&metal	Warming Fential land u ial, Accumul artment; EP ophication p s = Abiotic WDP = Water	se and land ated Excee -marine = E otential, Ac depletion	l use of dance utroph cumula potent	hange ; EP-fr lication ated E ial for	e; ODP eshwa poter xceed non-f	eter = lential, france; ossil r	pletion Eutrop action POCP resource	potentication of nutrection of	itial of n pote ients r matio DP-fo	the strential, freachire potens	ratospher raction of ng marine ntial of tr Abiotic of	ic ozo nutrie end co oposp depletio	ne layer; nts reacl ompartm heric ozo	; A hii nei on

Potential environmental impact – additional mandatory and voluntary indicators

Results per declared unit																
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP- GHG ⁷	kg CO ₂ eq.	6,11E+00	8,47E- 01	1,68E- 01	0	0	0	0	0	0	0	0	1,04E-02	0	1,65E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					Resul	ts per	declar	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	6,66E+00	1,69E-01	3,14E-01	0	0	0	0	0	0	0	0	1,77E- 03	0	7,24E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	6,66E+00	1,69E-01	3,14E-01	0	0	0	0	0	0	0	0	1,77E- 03	0	7,24E- 03	0
PENRE	MJ	1,40E+02	1,33E+01	3,03E+00	0	0	0	0	0	0	0	0	1,67E- 01	0	5,52E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,40E+02	1,33E+01	3,03E+00	0	0	0	0	0	0	0	0	1,67E- 01	0	5,52E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	7,09E+00	8,47E-01	2,60E+00	0	0	0	0	0	0	0	0	8,59E- 03	0	3,21E- 02	0
Acronyms	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-renew															

⁷ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

	Results per declared unit															
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	ВЗ	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste disposed	kg	2,83E-05	7,73E- 06	3,01E- 06	0	0	0	0	0	0	0	0	9,66E-08	0	1,89E-07	0
Non- hazardous waste disposed	kg	6,87E-01	9,36E- 01	1,72E- 01	0	0	0	0	0	0	0	0	1,42E-02	0	3,87E+00	0
Radioactive waste disposed	kg	1,38E-04	8,97E- 05	8,07E- 06	0	0	0	0	0	0	0	0	1,13E-06	0	3,78E-06	0

Output flows

	Results per declared unit															
Indicator	Unit	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	4,25E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,10E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results per declared unit										
BIOGENIC CARBON CONTENT	Unit	QUANTITY								
Biogenic carbon content in product	kg C	0,00E+00								
Biogenic carbon content in packaging	kg C	4,25E-06								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO_2 .

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 81,6%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 13,6% and 4,2% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,1% and 0,4% respectively of the whole impact. The life cycle has an impact of 7,36 kg of CO2 equivalent.

Results on impact categories

Environmental Information

DANOPOL FV 1.8 LIGHT GREY

Potential environmental impact – mandatory indicators according to EN 15804

				Results	pei u	leciale	u unii									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	5,80E+0 0	1,13E- 01	1,58E- 01	0	0	0	0	0	0	0	0	1,03E -02	0	1,64E -02	
WP-biogenic	kg CO ₂ eq.	8,06E- 03	3,86E- 05	2,09E- 04	0	0	0	0	0	0	0	0	3,44E -06	0	1,39E -05	
GWP- luluc	kg CO ₂ eq.	1,77E- 03	2,94E- 05	7,71E- 05	0	0	0	0	0	0	0	0	2,59E -06	0	2,65E -06	
GWP- total	kg CO ₂ eq.	5,81E+0 0	1,13E- 01	1,59E- 01	0	0	0	0	0	0	0	0	1,03E -02	0	1,64E -02	
ODP	kg CFC 11 eq.	2,48E- 07	2,68E- 08	9,18E- 09	0	0	0	0	0	0	0	0	2,47E -09	0	8,12E -09	
AP	mol H ⁺ eq.	3,49E- 02	5,57E- 04	9,48E- 04	0	0	0	0	0	0	0	0	4,35E -05	0	1,61E -04	
P-freshwater	kg PO ₄ eq.	3,07E- 04	4,54E- 06	1,73E- 05	0	0	0	0	0	0	0	0	4,12E -07	0	6,52E -07	
	kg P eq	1,00E- 04	1,48E- 06	5,64E- 06	0	0	0	0	0	0	0	0	1,34E -07	0	2,12E -07	
EP- marine	kg N eq.	5,05E- 03	1,53E- 04	1,56E- 04	0	0	0	0	0	0	0	0	1,27E -05	0	5,85E -05	
EP-terrestrial	mol N eq.	6,03E- 02	1,71E- 03	1,90E- 03	0	0	0	0	0	0	0	0	1,42E -04	0	6,53E -04	
РОСР	kg NMVO C eq.	4,04E- 02	5,33E- 04	8,61E- 04	0	0	0	0	0	0	0	0	4,52E -05	0	1,85E -04	
ADP- inerals&metal s*	kg Sb eq.	5,74E- 06	2,03E- 07	2,36E- 06	0	0	0	0	0	0	0	0	1,92E -08	0	1,75E -08	
ADP-fossil*	MJ	1,32E+0 2	1,78E+0 0	2,87E+0 0	0	0	0	0	0	0	0	0	1,64E -01	0	5,41E -01	
WDP	m³	1,31E+0 1	1,31E- 02	1,90E- 01	0	0	0	0	0	0	0	0	1,21E -03	0	2,28E -03	

Acronyms

GWP-tossii = Global Warming Potential tossii rueis; GWP-blogenic = Global Warming Potential blogenic; GWP-luiuc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	eclare	d unit								
Indicator	Unit	Tot.A1- A3	A4	A 5	B1	B2	В3	B4	В5	В6	В7	C1	C2	С3	C4	D
GWP- GHG ⁸	kg CO ₂ eq.	5,65E+00	1,12E- 01	1,55E- 01	0	0	0	0	0	0	0	0	1,02E- 02	0	1,61E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

					Resul	ts per	declar	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	6,39E+00	1,95E-02	2,84E-01	0	0	0	0	0	0	0	0	1,73E- 03	0	7,09E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	6,39E+00	1,95E-02	2,84E-01	0	0	0	0	0	0	0	0	1,73E- 03	0	7,09E- 03	0
PENRE	MJ	1,32E+02	1,78E+00	2,87E+00	0	0	0	0	0	0	0	0	1,64E- 01	0	5,41E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,32E+02	1,78E+00	2,87E+00	0	0	0	0	0	0	0	0	1,64E- 01	0	5,41E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	6,20E+00	9,54E-02	2,34E+00	0	0	0	0	0	0	0	0	8,42E- 03	0	3,15E- 02	0
Acronyms	of rend = Use Use of source	= Use of renewable primare of non-renewables; SM = Use FW = Use of I	y energy restrated a contract of the contract	sources used y energy ex energy resoury material; f	d as ra cluding rces u	w mate g non-i sed as	erials; F renewa raw m	PERT = able pr aterial	= Ťotal imary s; PEN	use of energy NRT =	renew resou Total u	rable purces urces urces urces	rimary en used as ra non-renev	ergy re aw ma vable p	esources; terials; PE orimary en	PENRE ENRM = ergy re-

⁸ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

					Re	sults p	er dec	lared (unit							
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	2,36E-05	1,03E- 06	2,61E- 06	0	0	0	0	0	0	0	0	9,47E-08	0	1,85E-07	0
Non- hazardous waste disposed	kg	6,64E-01	1,47E- 01	1,48E- 01	0	0	0	0	0	0	0	0	1,39E-02	0	3,79E+00	0
Radioactive waste disposed	kg	1,31E-04	1,21E- 05	6,57E- 06	0	0	0	0	0	0	0	0	1,11E-06	0	3,70E-06	0

Output flows

					Re	sults pe	r declar	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	4,25E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	7,10E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results p	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	4,25E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 92,2%% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 2,2% and 4,8% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,2% and 0,6% respectively of the whole impact. The life cycle has an impact of 6,11 kg of CO2 equivalent.

Results on impact categories

Environmental Information DANOPOL + HSF 1.8 DARK GREY ANTHRACITE

Potential environmental impact – mandatory indicators according to EN 15804

				Result	s per c	ieciare	ea unit									
Indicator	Unit	Tot.A1- A3	A4	A5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	C 1	C2	C 3	C4	
GWP-fossil	kg CO ₂ eq.	5,12E+0 0	3,02E- 01	1,59E- 01	0	0	0	0	0	0	0	0	1,06E -02	0	1,69E -02	
GWP-biogenic	kg CO ₂ eq.	5,23E- 03	1,03E- 04	2,08E- 04	0	0	0	0	0	0	0	0	3,55E -06	0	1,44E -05	
GWP- luluc	kg CO ₂ eq.	1,23E- 03	7,83E- 05	8,21E- 05	0	0	0	0	0	0	0	0	2,67E -06	0	2,74E -06	
GWP- total	kg CO ₂ eq.	5,13E+0 0	3,02E- 01	1,60E- 01	0	0	0	0	0	0	0	0	1,06E -02	0	1,69E -02	
ODP	kg CFC 11 eq.	2,01E- 07	7,17E- 08	1,13E- 08	0	0	0	0	0	0	0	0	2,55E -09	0	8,38E -09	
АР	mol H ⁺ eq.	2,60E- 02	1,47E- 03	9,69E- 04	0	0	0	0	0	0	0	0	4,49E -05	0	1,66E -04	
EP-freshwater	kg PO ₄ ³⁻ eq.	1,66E- 04	1,21E- 05	1,84E- 05	0	0	0	0	0	0	0	0	4,25E -07	0	6,72E -07	
	kg P eq	5,42E- 05	3,95E- 06	5,98E- 06	0	0	0	0	0	0	0	0	1,38E -07	0	2,19E -07	
EP- marine	kg N eq.	4,35E- 03	4,05E- 04	1,64E- 04	0	0	0	0	0	0	0	0	1,31E -05	0	6,04E -05	
EP-terrestrial	mol N eq.	5,16E- 02	4,53E- 03	1,99E- 03	0	0	0	0	0	0	0	0	1,46E -04	0	6,74E -04	
POCP	kg NMVO C eq.	3,74E- 02	1,42E- 03	8,16E- 04	0	0	0	0	0	0	0	0	4,66E -05	0	1,91E -04	
ADP- inerals&metal s*	kg Sb eq.	2,30E- 06	5,45E- 07	2,39E- 06	0	0	0	0	0	0	0	0	1,98E -08	0	1,80E -08	
ADP-fossil*	MJ	1,26E+0 2	4,77E+0 0	2,76E+0 0	0	0	0	0	0	0	0	0	1,69E -01	0	5,58E -01	
WDP	m³	1,27E+0 1	3,52E- 02	1,60E- 01	0	0	0	0	0	0	0	0	1,25E -03	0	2,36E -03	
Acronyms	Global W = Acidification freshwate EP-terres ADP-mine	arming Pote ation potention or end compo trial = Eutro	Warming Fential land u ial, Accumul artment; EP ophication p s = Abiotic	se and land lated Excee -marine = E otential, Ac depletion	l use of dance utroph cumula potent	change ; EP-fr lication ated E ial for	e; ODP eshwa poter xceed non-f	= Departer = Intial, france; ossil r	pletion Eutroplaction POCP esource	potenhication of nutrices; A	tial of n pote ients r mation DP-fo	the stantial, for eaching pote stantial through the stanting term of the stanting term of the stantial term of the	ratospher raction of ng marine ntial of tr Abiotic of	ic ozo nutrie end co oposp depleti	ne layer; ints reacl ompartm heric ozo	; / hi ne or

PAGE 42/48

Potential environmental impact – additional mandatory and voluntary indicators

					Result	s per d	leclare	d unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
GWP- GHG ⁹	kg CO ₂ eq.	4,98E+00	2,99E- 01	1,56E- 01	0	0	0	0	0	0	0	0	1,05E-02	0	1,65E- 02	0

Disclaimers shall be added, if required by EN 15804.

Use of resources

				R	esults	per de	clared	unit								
Indicator	Unit	Tot.A1- A3	A4	A 5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	2,86E+00	5,21E-02	2,86E-01	0	0	0	0	0	0	0	0	1,79E- 03	0	7,32E- 03	0
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	2,86E+00	5,21E-02	2,86E-01	0	0	0	0	0	0	0	0	1,79E- 03	0	7,32E- 03	0
PENRE	MJ	1,26E+02	4,77E+00	2,76E+00	0	0	0	0	0	0	0	0	1,69E- 01	0	5,58E- 01	0
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	1,26E+02	4,77E+00	2,76E+00	0	0	0	0	0	0	0	0	1,69E- 01	0	5,58E- 01	0
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	3,03E+00	2,55E-01	2,36E+00	0	0	0	0	0	0	0	0	8,68E- 03	0	3,25E- 02	0
Acronyms	of ren = Use Use o source	E = Use of ren ewable primal of non-renewal f non-renewal es; SM = Use FW = Use of	ry energy reso vable primary ble primary er of secondary	ources used a r energy exclunergy resourc r material; RS	is raw i uding r es use	materia non-rei ed as ra	als; PE newab aw mat	RT = 1 le prim erials;	Γotal us nary er PENR	se of renergy retails	enewal esourc etal use	ble princes use	mary energed as raw n-renewab	gy reso materi ole prim	urces; PEI als; PENF nary energ	NRE RM = ly re-

⁹ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Waste production and output flows

Waste production

					Res	sults pe	er decl	ared u	nit							
Indicator	Unit	Tot.A1- A3	A 4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
Hazardous waste disposed	kg	1,32E-05	2,76E- 06	2,74E- 06	0	0	0	0	0	0	0	0	9,77E- 08	0	1,91E-07	0
Non- hazardous waste disposed	kg	3,47E-01	3,94E- 01	1,77E- 01	0	0	0	0	0	0	0	0	1,43E- 02	0	3,91E+00	0
Radioactive waste disposed	kg	8,43E-05	3,24E- 05	7,36E- 06	0	0	0	0	0	0	0	0	1,15E- 06	0	3,82E-06	0

Output flows

					Re	sults pe	r declar	ed unit								
Indicator	Unit	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	6,09E- 03	0	0	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	6,50E+01	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results p	er declared unit	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	4,25E-06

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO_2 .

In general terms, as it is shown in the table of potential environmental impact, and figure results impact categories, A1 module has the biggest impact, representing at least 86,0% of the whole impact, identifying raw materials as the process with the greatest impact within the stage. A4 and A5 module has a low impact, representing at most 6,72% and 6,86% correspondingly of the life cycle impact. Finally, C2 and C4 module has low impact too, representing at most 0,2% and 0,7% respectively of the whole impact. The life cycle has an impact of 5,62 kg of CO2 equivalent.

Results on impact categories

Information related to Sector EPD

This is not a sector EPD.

Differences versus previous versions

2nd Version

- Impacts due to substitution are not considered.
- The main difference is the change of name of some references and the incorporation of new products as shown in the following table.

Thickness	Previous version	Current version
1.2 mm	DANOPOL 1.2 HS and 1.2 H.S Dark grey	DANOPOL HS 1.2 LIGHT GREY and DANOPOL + HS 1.2 DARK GREY ANTHRACITE.
		DANOPOL HS 1.2 COOL ROOFING
	DANOPOL 1.2 FV and FV NI	DANOPOL FV 1.2 LIGHT GREY.
	DANOPOL 1.2 HS Blanco	-
	DANOPOL 1.2 DW	-
1.5 mm	DANOPOL HS 1.5 FV and H.S 1.5 Dark grey	DANOPOL HS 1.5 LIGHT GREY and DANOPOL + HS 1.5 DARK GREY ANTHRACITE.
		DANOPOL HS 1.5 COOL ROOFING
	DANOPOL 1.5 FV and 1.5 FV NI	DANOPOL FV 1.5 LIGHT GREY and DANOPOL + FV 1.5 DARK GREY ANTHRACITE
		DANOPOL HSF 1.5 LIGHT GREY
		DANOPOL + HSF 1.5 DARK GREY ANTHRACITE
1.8 mm	DANOPOL 1.8 HS	DANOPOL HS 1.8 LIGHT GREY and DANOPOL + HS 1.8 DARK GREY ANTHRACITE
		DANOPOL HS 1.8 COOL ROOFING
	DANOPOL 1.8 FV	DANOPOL FV 1.8 LIGHT GREY and DANOPOL + FV 1.8 DARK GREY ANTHRACITE
		DANOPOL + HSF 1.8 DARK GREY ANTHRACITE

3rd Version

• Company information and product descriptions have been updated.

References

- General Programme Instructions of the International EPD® System. Version 3.01.
- PCR 2019:14 Construction products version 1.11
- CEN (2019): EN 15804:2012+A2:2019, Sustainability of construction works Environmental product declarations.
- Basic product category rules for building products.
- ISO 14040:2006: Environmental Management-Life Cycle Assessment-Principles and framework
- ISO 14044:2006: Environmental Management-Life Cycle Assessment-Requirements and guidelines.
- ISO 14025:2006: Environmental labels and declarations-Type III Environmental Declarations-Principles and procedures.
- ISO 14020:2000: Environmental labels and declarations General principles.
- LCA DANOSA DANOPOL.

VERIFICATION STATEMENT CERTIFICATECERTIFICADO DE DECLARACIÓN DE VERIFICACIÓN

Certificate No. / Certificado nº: EPD00401

TECNALIA R&I CERTIFICACION S.L., confirms that independent third-party verification has been conducted of the Environmental Product Declaration (EPD) on behalf of:

TECNALIA R&I CERTIFICACION S.L., confirma que se ha realizado verificación de tercera parte independiente de la Declaración Ambiental de Producto (DAP) en nombre de:

DERIVADOS ASFALTICOS NORMALIZADOS, S.A. (DANOSA) Pol. Ind. Sector, 9 19290 - FONTANAR (Guadalajara) SPAIN

for the following product(s): para el siguiente(s) producto(s):

DANOPOL PVC WATERPROOFING SHEET: DANOPOL HS and DANOPOL FV. LÁMINAS IMPERMEABILIZANTES DE PVC DANOPOL: DANOPOL HS y DANOPOL FV.

with registration number **S-P-00691** in the International EPD® System (www.environdec.com). con número de registro **S-P-00691** en el Sistema International EPD® (www.environdec.com).

it's in conformity with: es conforme con:

- ISO 14025:2010 Environmental labels and declarations. Type III environmental declarations.
- General Programme Instructions for the International EPD® System v.3.01.
- PCR 2019:14 Construction products (EN 15804:A2) v.1.11.
- CPC 547 Building completion and finishing services.

Issued date / Fecha de emisión:18/05/2015Update date / Fecha de actualización:05/05/2023Valid until / Válido hasta:25/07/2026Serial № / № Serie:EPD0040102-E

This certificate is not valid without its related EPD.

Este certificado no es válido sin su correspondiente EPD.

Este certificado no es válido sin su correspondiente EPD.

El presente certificado está sujeto a modificaciones, suspensiones temporales y retiradas por TECNALIA R&I CERTIFICACION.

This certificate is subject to modifications, temporary suspensions and withdrawals by TECNALIA R&I CERTIFICACION.

El estado de vigencia del certificado puede confirmarse mediante consulta en www.tecnaliacertificacion.com

The validity of this certificate can be checked through consultation in www.tecnaliacertificacion.com.

