

Environmental Product Declaration

In accordance with ISO 14025 for:

DAUN BUAH[™] GRANULATED UREA

From

PT Pupuk Kalimantan Timur

PUPUK 🕑 KALTIM

Programme

The International EPD® System, www.environdec.com

EPD registered through the fully aligned regional hub

EPD Southeast Asia, www.epd-southeasia.com

Programme operator EPD International AB

Regional Hub EPD Southeast Asia

EPD registration number S-P-04685

Publication date 2021-10-22

Valid until 2026-10-21

An EPD should provide current information, and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

Table of Contents

Company information | p.2

Description of the organisation Certifications Name and location of production site

Product information | p.4

Product name Product identification Product description Product composition UN CPC code Geographical scope Agronomic Efficiency Index (AEI) Uptake Index (UI) Waste production and output flows | p.12 Waste production Output flows

Verification and registration | p.13

Contact Information | p.15

References | p.16

Appendix | p.18

Time Representativeness Database(s) and LCA software used System diagram System boundaries Excluded Lifecycle stages Main Assumption Limitations More informations

LCA information | p.5

Declared unit

Content declaration | p.9

Environmental performance | p.10 Potential environmental impact Use of resources

Company information

Description of the organisation:

PT Pupuk Kalimantan Timur (Pupuk Kaltim) is a subsidiary of PT Pupuk Indonesia (Persero). Pupuk Kaltim sits in a land area of 443 hectares in Bontang, East Kalimantan. Pupuk Kaltim's main business is producing and selling Ammonia, Urea, and NPK, to meet domestic needs or for export purposes. For the distribution of the domestic subsidy sector, Pupuk Kaltim's marketing area covers East Java, North Kalimantan, East Kalimantan and the whole island of Sulawesi in Indonesia.

Certifications:

- · SNI ISO 9001:2015
- · ISO 14001:2015
- · ISO 45001:2018
- · ISO 55001:2014
- ISO 50001 : 2018
- Green industry
- Green Port Award

Details of Pupuk Kaltim's commitment to sustainable development can be found in the company's sustainability report.

Name and location of production site:

Kelurahan Guntung & Kelurahan Loktuan, Bontang, Kalimantan Timur, Indonesia

Vision

To become a growing and sustainable world-class Company in the fertilizer, chemical and Agrobusiness industry. PT Pupuk Kalimantan Timur (Pupuk Kaltim) is the largest urea plant in Indonesia, located in Bontang City, East Kalimantan. The plant is established in the year 2014 with a urea production rate of 545,684.09 Ton/year. The urea product is shipped to East Java in Tanjung Priok and Meneng Port from which the product is distributed to farmers via road transportation.

Pupuk Kaltim realizes the strategic significance of the development of telecommunication and information technology in improving the efficiency of plant operational performance as well as its benefits in reducing the environmental impact of production activities.

Therefore, all personnel at Pupuk Kaltim are ready to embrace the Industry 4.0 era through a thorough transformation in operational activities, from the procurement of raw materials to the production and distribution processes.

We design and implement a comprehensive energy management program, consistently recording reductions in greenhouse gas emissions and conventional gas emissions, reducing waste, and increasing cooperation in the utilization of waste from the operations of our production facilities. We also intensify the use of information technology in environmental conservation programs and community empowerment.

The efforts done by Pupuk Kaltim have resulted in **the fourth consecutive GOLD PROPER rating for 2020**, acknowledging our continuous journey in contributing to the achievement of various development goals in Sustainable Development Goals (SDGs).

Pupuk Kaltim is the first fertilizer producer in Indonesia to receive the Green Industry certification from the Ministry of Industry of the Republic of Indonesia.

Product information

Product name:

Daun Buah™Urea

Product identification:

Urea is also known as Carbamide, Carbonyldiamide, and Carbamidic Acid with chemical formulation $(NH_2)_2CO$ or CH_4N_2O

Product description:

Urea fertilizer, also known as nitrogen (N) fertilizer, has a nitrogen content of 46%. Urea is made from the reaction between ammonia and carbon

dioxide in a chemical process into solid urea. Pupuk Kaltim produces urea in the form of granules. Granulated urea is more suitable for the plantation segment, although it can also be used for food crops. Daun Buah[™] Urea is the brand used for non-subsidized granular urea fertilizer produced by Pupuk Kaltim, white in color with a grain size of 2: 4.75 mm.

Product composition:

- Nitrogen: min 46.0% (w/w)
- Water: 0.5 % (w/w)
- Biuret (CAS no. 108-19-0): 1.2 1.5% (w/w)
- Density: 2.31 g/cm3
- Bulk density: 44 49 lb/ft3 or 750 kg/m³

UN CPC code 3461:

Nitrogenous fertilizers

SNI 2801:2010

Geographical scope Indonesia

Head Office & production site Bontang

Agronomic Efficiency Index (AEI):

Agronomic Efficiency Index (AEI) is an indicator of the impact of applied urea on rice productivity. The AEI of Pupuk Kaltim's granulated urea is estimated to be in the range of 20-25 kg rice/kg granulated urea based on a field study conducted by the internal R&D team.

Uptake Index (UI):

For urea application on soil is 23 460 kg/2000M2 farmland, Uptake Index for urea is represented by Nitrogen uptaken, when the urea is applied on soil, 27% of N will be uptaken by plant, while 68% will be persisted on soil and the rest which is 5% will be lost and brought by water as run off.

Southeast Asia

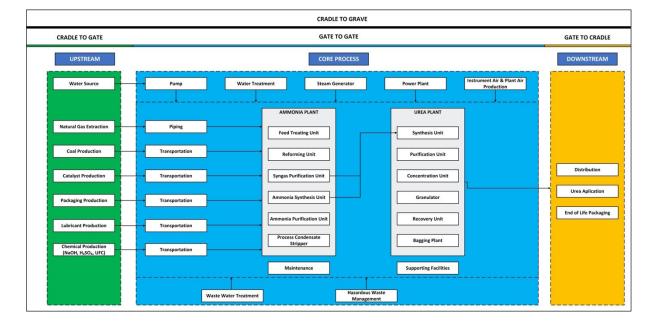
LCA information

Declared Unit:

1 metric ton of granulated urea and its packaging.

The declared unit may have different functionality depending on the composition of the product that is declared.

Reference service life: Not applicable


Time representativeness:

Specific data based on data in 2019.

Generic data: 29% data are from generic datasets with temporal representativenes ranges from 2015-2019.

Database(s) and LCA software used: LCA was conducted manually using Microsoft Excel.

No databases were directly used for the background data. Journal publications were used as the source of secondary data (see Appendix), where the journal publications used datasets from known databases such as Ecoinvent, Gabi database, JEMAI, SIRIM, and others.

System diagram:

System boundaries:

This is a "cradle-to-grave" life cycle analysis reported in accordance with EPD Product Category Rule (PCR) 2010:20 Mineral or chemical fertilizers, Version 3.0.

The product life cycle is divided into three stages:

Upstream Processes	Core Process	Downstream Process
 Natural gas and coal extraction processes, Chemical and auxilliary materials production processes, and Primary and secondary packaging material manufacturing processes 	 Transportation of raw and auxilliary materials into the core process; Production processes (ammonia, urea), Utility processes; Transportation of solid waste (Hazardoues Waste (Hazardoues Waste (HW) and non-HW) from production Wastes to contractors; Wastewater treatment; Air emission management; Storage/warehouse; Electricity production (GTG). 	 Transportation from warehouses to distribution warehouses, Transportation from production warehouses and distribution warehouses, Transportation from production warehouses to customers, Product use by customers and End-of-life processing of packaging waste

Excluded life cycle stages:

Technical systems that are excluded in the scope of the study are:

- a) The production process of equipment, buildings and other capital goods,
- b) Personnel business trips,
- c) Personnel travel to and from the office, and
- d) Research and development activities.

The study excludes

- Fugitive gas emission streams and VOC (Volatile Organic Substance) emissions, venting and boiler blowdown. The equipment is designed to prevent the release of fugitive gas emission. Under normal condition, fugitive gas emission will not be released.
- Processes that take place under abnormal conditions such as production failures and quality failures

Southeast Asia EPD

Main assumptions:

 the catalyst. Note: there is no catalyst replacement in the Plant IA; The catalyst change every 5 years, the data use for calculation is a total catalyst for 5 years divided by 5 (average use for 1 year). Similar fuel types consumed for trucks and ships from which these emit gas with a composition referring to Guidelines for the Implementation of the National Greenhouse Gas Inventory Methodology for Calculation of Greenhouse Gas Waste Fleat Done, Flining Tower (11) 22, F1 22
 Similar fuel types consumed for trucks and ships from which these emit gas with a composition referring to Guidelines for the Implementation of the National Greenhouse Gas Inventory Reliable data and information from secondary previous studies covering natural gas extraction, coal production, chemicals and auxiliary chemicals,
Emission Levels of the Ministry of Environment in 2012. For instance, consistent quality as reported in the certificate of analysis for natural gas dan coal.
Farmers do not use vehicles to carry urea from their house to their farmland. Out their farmland. Reliable transportation data of input material and product in terms of mileage, delivery frequency both on land and on water transportation.
 One distribution route and one urea supply source for East Java applies consistently. The route starts from Bontang port to Meneng Port and Surabaya Port from where the granulated urea is transferred to all areas in East Java. Emission from wastewater plant can be sufficiently represented by parameter (NH3, Chemical Oxygen Demand, Total Suspended Solids, oils and fats, Cl2) stipulated in company monitoring plan following government threshold limit.
There is no either neglected fugitive emission representing full normal plant operation within the period of study. Emission from hazardous waste management can be sufficiently represented by parameter
• There is no production failures and quality failures unreported beyond data examined by LCA team in the form of total hours operation within year 2019. (used oil, used catalyst, used rags) stipulated in requirement of hazardous waste regulation.
There is no either neglected venting and boiler blowdown within the period of study. Used packaging follows end of life routes consisting of mechanical recycling, landfilling and burning.

Limitations:

The limitations of this study are as follows:

- The study bases on annual rate to have similar and equivalent unit for all emissions to enable calculation. Some emissions are available as a continuous daily or monthly rate which need to be converted to annual rate. For instance, ammonia plant catalyst functioned at a 5 year, its mass flow is obtained by dividing the catalyst tonnage by 5.
- Catalyst production is represented by NiO production but for environmental impact data covered all metal catalyst (NiO, CoMo, ZnS, FeO, and CuO).

More information:

Cut-off rules:

The implementation of the study is that all processes within the product system are not cut-off. 100% of life cycle inventory data of the total inflow from the core module have been covered. There are some processes where Pupuk Kaltim has limited data access, so that the emission and consumption calculations are based on secondary data comprising of flowrate and categorized impact.

Data quality:

The data quality as shown in Table 2.3 shows is sufficient to carry out LCIA where the data generated and accessible by Pupuk Kaltim reaches a percentage of 100%. This includes data on gas distribution, catalyst transportation, ammonia plant, urea plant, utility plant, wastewater treatment plan, HW management, air pollution control, and product transportation.

In the downstream, products are distributed to the farmers. 97% product distributed to the farmers were considered for the calculation of the end-of-life of the packagings. Data on gas wells, catalyst factories, auxiliary chemical plants, packaging factories use 100% secondary data because Pupuk Kaltim has access to these data.

	Input	% Data	Output	% Data
Generic Data	27	23.89	58	28.57
Primary Data	86	75.44	142	69.95
Proxy	1	0.88	3	1.48
Total	114	100	203	100

Table 1 Data Category

From the table above shows that 100% data categorized as primary and generic.

Agronomic Efficiency Index (AEI):

Agronomic Efficiency Index (AEI) is an indicator of the impact of applied urea on rice productivity. The AEI of Pupuk Kaltim's granulated urea is estimated to be in the range of 20-25 kg rice/kg granulated urea based on a field study conducted by the internal R&D team.

Uptake Index (UI):

For urea application on soil is 23 460 kg/2000M2 farmland, Uptake Index for urea is represented by Nitrogen uptaken, when the urea is applied on soil, 27% of N will be uptaken by plant, while 68% will be persisted on soil and the rest which is 5% will be lost and brought by water as run off.

Content declaration

Product

Table 2 Product content declaration

Materials / chemical substances	CAS No.	%	Environmental / hazardous properties
Nitrogen		46.0 (min)	Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation.
Water		0.5 (max)	Not classified as a hazardous chemica
Biuret	108-19-0	1.2-1.5	Causes severe skin burns and eye dam- age.

Packaging

Distribution packaging:

The products are distributed in 50 kg packing

Consumer packaging:

The product is packaged in a 50 kg capacity plastic packaging weighed 150 grams and composed of 48 grams of polyethylene and 102 grams of polypropylene

Recycled material

Provenience of recycled materials (pre-consumer or post-consumer) in the product: The product does not contain any recycled materials

Environmental performance

Potential environmental impact

Table 3 Environmental Impact Calculation Results (Upstream-Core-Downstream)

luccus at			Impact Potential Value per Declared Unit				
Impact Category	Unit	Method	Code	Upstream	Core	Down- stream	Total
Global Warming Potential	kg CO₂ eq	CML v. January 2016	GWP100	4.18	897.00	216.51	1 117.26
Acidifi- cation Potential	kg SO₂ eq	CML v. January 2016	AP	3.65	0.70	0.24	4.59
Photo- chemical Oxidant Formation Potential	kg NMVOC eq.	ReCiPe 2008	POFP	0.20	0.35	0.02	0.57
Eutro- phication Potential	kg PO₄³- eq.	CML 2001 baseline, v.January 2016	EP	0.03	0.05	0.03	0.11
Abiotic depletion potential – Elements	kg Sb eq.	CML 2001 baseline, v.January 2016	ADP elements	0.02	0.00	0.00	0.02
Abiotic depletion potential – Fossil fuels	M], net calorific value	CML 2001 baseline, v.January 2016	ADP fossil fuels	30 855.14	0.00	0.00	30 855.14
Water Scarcity Footprint (WSF)	m³ H₂O eq	AWARE Method	WSF	0.01	0.00	0.00	0.01

Environmental impact category based on product system boundary as shown above, core contribute the highest GWP (897 kg CO₂ eq/Ton Urea Granules) from primary reformer (383.46 kg CO₂ eq/Ton Urea Granules). Upstream contribute the highest abiotic depletion potential – fossil fuels (30 855.14 MJ, net calorific value) from natural gas resources (29.985 MJ, net calorific value).

Environmental Product Declaration 2021 - 2026 PT Pupuk Kalimantan Timur

Southeast Asia

Use of resources

The resource use based on the life cycle inventory (LCI) per declared unit

Table 4 Indicators describing use of primary and secondary resources

Para	meter	Unit	Up- stream	Core	Down- stream	Total
Primary	Use as energy carrier	MJ, net calorific value	о	0	Ο	0
energy resources – Renew-	Used as raw materials	M], net calorific value	0	0	0	0
able	TOTAL	M], net calorific value	0	0	0	0
Primary energy	Use as energy carrier	M], net calorific value	157	11 805	0	11 962
resources – Non- renew-	Used as raw materials	M], net calorific value	0	30 959	0	30 959
able	TOTAL	M], net calorific value	157	42 764	0	42 921
Seconda	ry material	kg	2 338	14	0	2 352
Renewable secondary fuels		M], net calorific value	0	0	Ο	0
Non-renewable secondary fuels		M], net calorific value	0	7 041	1.28E-04	7 041
Net use of	fresh water	m³	0.14	1.06	0.00	1.20

Waste production and output flows

Waste production

Table 5 Environmental indicators describing waste production per declared unit

Parameter	Unit	Upstream	Core	Downstream	Total
Hazardous waste disposed	kg	0	8.77 E-02	0	8.77E-02
Non-hazardous waste disposed	kg	o	5.78E-01	O	5.78E-01
Radioactive waste disposed	kg	0	o	0	0

Output flows

Table 6 Environmental indicators describing output flows per declared unit

Parameter	Unit	Upstream	Core	Downstream	Total
Components for reuse	kg	O	O	O	O
Material for recycling	kg	O	6.43E-01	O	6.43E-01
Materials for energy recovery	kg	0	2.22E-02	0	2.22E-02
Exported energy, electricity	MJ	O	O	O	0
Exported energy, thermal	MJ	0	0	0	0

Verification and registration

Programme	The International EPD System EPD registered through the fully aligned regional hub: EPD Southeast Asia www.epd-southeastasia.com	EPD [®] THE INTERNATIONAL EPD® SYSTEM Southeast Asia
Programme Operator	EPD International AB Box 210 60, SE-100 31 Stockholm, Sweden EPD Southeast Asia Kencana Tower Level M, Business Park Kebon Jeruk Jl. Raya Meruya Ilir No. 89, Jakarta Barat 11620 Indonesia https://www.epd-southeastasia.com/	

EPD registration number:	S-P-04685
Date of publication (issue):	2021-10-22
Date of validity:	2026-10-21
Reference year of data:	2019
Geographical scope	Indonesia
Product group classification:	UN CPC 3461 Nitrogenous fertilizers, mineral or chemical SNI 2801:2010
Product category rules (PCR):	Product category rules (PCR): Mineral or chemical fertilizers Registration number, version: 2010:20, Version 3.0 UN CPC 3461, 3462, 3463, 3464 & 3465
PCR review was conducted by:	The Technical Committee of the International EPD® System. Chair of the PCR review: Lars-Gunnar Lindfors The review panel may be contacted via info@environdec.com.

Independent third-party verification of the declaration and data, according to ISO 14025:2006:	 EPD process certification EPD verification
Third party verifier:	Claudia Pena Urrutia claudia@epd-americalatina.com
Approved by:	The International EPD [®] System
Procedure for follow-up of data during EPD validity involves third party verifier:	🕱 Yes 🗆 No

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable.

Contact information

EPD owner:

LCA author

PUPUK 🚯 KALTIM

PT Pupuk Kalimantan Timur (Pupuk Kaltim)

Jl. Ir. James Simanjutak No 1 Bontang 75313 Indonesia

www.pupukkaltim.com

Telephone: (0548) 41201/41202

Contact person:

Ertalina Sitorus ertalina_s@pupukkaltim.com

Novian Sulistyo novian.sulistyo@pupukkaltim.com

PT Sekar Delima Seta

Taman Yasmin, Jl. Pakis Gunung III No. 72-74, RT 005 RW 009, Cilendek Timur, Bogor 16112

www.paradigm-consulting-training.co.id

LCA authors:

Agustinus Hariadi DP, Nyoman D. Adi, Cokorda Prapti Mahandari, Puji Kartini, Al Mudzni

Contact person:

Agustinus Hariadi DP. agus.hariadi.dp@gmail.com

Programme operator:

EPD International AB

Box 210 60 SE-100 31 Stockholm Sweden Regional Hub of EPD Southeast Asia

EPD Southeast Asia

Kencana Tower Level M, Business Park Kebon Jeruk, JI Raya Meruya Ilir No. 88, Jakarta Barat 11620,Indonesia

https://www.epd-southeastasia.com/

Contact:

admin@epd-southeastasia.com

Environmental Product Declaration 2021 - 2026 PT Pupuk Kalimantan Timur

References

Alkusayer, K. Ollerhead, A. Ammonia Synthesis for Fertilizer Production. Project report.

Bredeson, L., Quiceno-Gonzalez, R., Riera-Palou, X., Harrison, A., 2010. Factors driving refinery CO2 intensity, with allocation into products. International Journal Life cycle assess. 15: 817-826.

Dallmanner, et al. 2014. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Copernicus Publication.

Damanik, M., Q., A., Hanafi, Jesica., Karlinasari Lina., 2021, Life Cycle Assesment (LCA) Cradle to Gate Produksi Batubara PT XYZ Kalimantan Selatan, Thesis, IPB University

Engelstad, O.P., diterjemahkan oleh Goenadi, D. H., 1997, Teknologi dan Penggunaan Pupuk, UGM, Yogjakarta

Frazier, Robert S., Enze Jin and Ajay Kumar, 2015, Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning, Energyes, 8, 621-644; doi:10.3390/en8010621

General Programme Instructions of the International EPD® System. Version 3.01.

Gheewala, S., 2009. LCA of waste management systems – research opportunities. International Journal Life Cycle Assessment. 14: 589-590.

Greig, Anne Landfield & Sandra Carey, 2016, International Molybdenum Association (IMOA) life cycle assessment program and perspectives on the LCA harmonization effort, Int J Life Cycle Assess (2016) 21:1554–1558, DOI 10.1007/s11367-015-0990-8

Hauschild, MZ., Jolliet, O., Huibregts, MA. 2011. International Journal Life Cycle Assessment. 16: 697-700.

Hooftmanm, N., Oliveira, L., Messagie, M., Coosemans, T., Van Mierlo, J., 2015. Environmental analysis of petrol, diesel and electric passenger cars in a Belgian urban setting.

International Organization for Standardization. (2006). Environmental management—Life cycle assessment — Principles and framework (ISO 14040).

International Organization for Standardization. (2006). Environmental management—Life cycle assessment — Requirements and guidelines (ISO 14044).

Joni Safaat Adiansyah, Naliawati Prastiya Ningrum, Dyan Pratiwi, dan Hadiyanto, 2019, Kajian Daur Hidup (Life Cycle Assessment) dalam Produksi Pupuk Urea: Studi Kasus PT Pupuk Kujang, Jurnal Ilmu Lingkungan, Vol 12, Issue 3

Kementerian KLH, 2012, Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Buku II–Volume 2 Metodologi Penghitungan Tingkat Emission Gas Rumah Kaca Proses Industri Dan Penggunaan Produk (IPPU)

Lane, Ben. 2006. Life Cycle Assessment of Vehicle Fuels and Technologies-Final Report.

Lewandowska, A. 2010. Environmental lifecycle assessment as a tool for identification and assessment of environmental aspects in environmental management system (EMS) part 1: methodology. International Journal Life Cycle Assessment . 16: 178-186.

Environmental Product Declaration 2021 - 2026 PT Pupuk Kalimantan Timur Southeast Asia

Lewandowska, A., Kulcycka, J., Matuszak-Flejsaman, Baumman, H. Ciroth, A., 2011. Environmental lifecycle assessment as an element in environmental management system (EMS) part 2: results of survey research. International Journal Life Cycle Assessment . 18: 481-489.

Lighthart, TN., Jongbloed, RH., Tamis, JE. 2010. A method for improving centre for environmental studies (CML) characterisation factors for metal Ecotoxicity – the case of zinc gutters and downpipes. International Journal of Life cycles Assessment. 15: 745-756.

Martinez, I. 1995-2019. Fuel properties.

Mori, Mitja, Boštjan Drobnič, Gašper Gantar, Mihael Sekavčnik, 2013, Life Cycle Assesment Of Supermarket Carrir Bags And Opportunity of Bioplastics, Proceedings of SEEP2013, 20-23 August 2013, Maribor, Slovenia

Muziansyah, D., Sulityorini, R., Sebayang, S., 2015. Model emission gas buangan kendaraan bermotor akibat aktivitas transportasi. JRSDD, Vol 3, No 1.

National Energy Technology Laboratory, 2016, Life Cycle Analysis of Natural Gas Extraction and Power Generation, US Departement of Energy, DOE/NETL-2015/1714

Nuss, P. 2015. Life cycle thinking informs cayalysis choice and green chemistry. Yale University.

PCR 2010:20. Mineral or chemical fertilizers Version 3.0

Pupuk Indonesia, 2019, Pupuk Urea, Klasifikasi Kategori Produk: UN CPC 3461, 3462, 3463, 3464 & 3465, Versi 1.0, Berlaku samapi dengan 2022-09-18

Raj, S. 2014. Studi Perbandingan Kadar Timbal Pada Bensin Berupa Premium dan Pertamax secara Inductively Coupled Plasma/ Optical Emission Spectrometry (ICP/OES). Skripsi. Universitas Sumatera Utara.

Shi, Longyu, Lingyu Liu, Bin Yang, Gonghan Sheng and Tong Xu, 2020, Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA), Sustainability 2020, 12, 3793; doi:10.3390/ su12093793.

Skowronska, M. Filipek, T. 2014. Life cycle assessment of fertilizers: a review. Int. Agrophys., 28, 101-110.

Tuner, M. 2015. Combustion alternative vehicle fuels in internal combustion engines. Lund University.

Wardenaar, T. Ruijevan, T., Beltran, AM, Vad, K., Guinee, J., Heijungs, R. 2011. Difference between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio energy policies. 17: 1059-1067.

WBCSD Chemical, 2015, Life Cycle Metrics for Chemical Products A guideline by the chemical sector to assess and report on the environmental footprint of products, based on life cycle assessment.

Witjonarko, RDE, Haryono, E. 2017. Kajian Eksperimental Emission Gas Buang Two Stroke Marine Diesel Engine Berbahan Bakart Campuran Minyak Solar (HSD) dan Biodiesel Minyak Jelantah pada Beban Simulator Full Load. Jurnal Inovtek Polbeng, Vol 7, No 2.

Table A Data Source for Upstream Process (PCR Mineral or Chemical Fertilizer version 3.0 2010:20)

Material	Model	Data Source	2019 Analysis	Scope	Double Counting
Natural gas	Extraction process and gas treatment calculated through generic data, stoichiometry or extraction process database and gas treatment	Composition data based on certificate of analysis, average data within 1 year	Literature (Scone &James, 20130)	Cradle to Gate Gas Extraction	No DC, since the Emission Calculation only for Gas Extraction.
Coal	Coal mining process calculated based on generic data using a model or coal mining process database	1) composition data based on certificate of analysis, average data of 1 year 2) database/ model for coal mining process	Literature (Supply data from supplier, Lab analysis results)	Product composition analysis	NO DC, Lab Analysis done to Coal before supplied to Pupuk Kaltim). Supplier do not conduct LCA (not doing calculation)
Auxilliary material (chemicals, lubricant and catalyst)	Data considered from other input from other process	Material data in generic term based on database or literature	From literature (Frazier et al 2015)	Data collected from supplier	None
Transporting coal	 Distance x load (ton. km) Distance from supplier, considered from coal mine site Mode of transportation used (see Table of Mode of Transport) Load per mode 	 The distance from the coal mine site is assumed to be the shortest distance between the Supplier and the Plant obtained based on Google Earth generic data or GPS. Payload data is a total data of 1 years. 	Primary data	Emission of Transport coal from Extraction location to Pupuk Kaltim's location	No DC, data used is Primary data supplied by supplier. Supplier do not conduct LCA.
Transporting auxilliary	 Distance x load (ton. km) Distance from supplier, considered from coal mine site Mode of transportation used (see Table of Mode of Transport) Load per mode 	 The distance from the supplier is assumed to be the shortest distance between the Supplier and the Plant obtained based on Google Earth or GPS generic data. Payload data is a total data of 1 year. 	Mileage data	Emission of Transport Auxiliary from Supplier location to Pupuk Kaltim's location	No DC data purely from transportation activity. no other calculation other than this.

Environmental Product Declaration 2021 - 2026

PT Pupuk Kalimantan Timur

18

ΈΡ

Material	Model	Data Source	2019 Analysis	Scope	Double Counting
Water sources		 Data is based on direct measurement based on flowmeter, data is calculated based on a total of 1 year The electricity consumption data for the intake pump is the primary direct measurement data based on the kwhmeter, the total data is 1 year 	Seawater consumption flow rate	Gate to Gate	NO DC, using direct measurements at the main activity. Counting done on the spot.

Table B Type of Transport Mode (PCR Mineral or Chemical Fertilizer version 3.0 2010:20)

Modes of transpor- tation	Туре	Fuel Consumption (km/L)	Type of fuel (Gasoline/ Diesel/ LNG)	Reference	2019 study	Scope	Double Counting
Land	Truck double 6 tires 110 Ps – 130 Ps (4 x 2) 5 tonne payload	6 km/Liter or 1.2 ton.Km/L or 5 km/L	Diesel	Supply Chain Indonesia	The fuel consumption data used is km/L	Specific data	NO DC, Calculation done for real transportation, no other calculation other than this.
Sea	DWT 4500- 6 000 Ton	6—11,5 ton/day	Diesel	Pupuk Kaltim	Conform to the ships used by Pupuk Kaltim with capacities of 1 000 tons, 8 000 tons, and 40 000 tons/day.	Specific data	NO DC, Calculation done for real transportation, no other calculation other than this.

Table C Data sources of core processes

• • • . • • • • • •

•

Power Generation	Solid waste, if using coal fuel	Fly ash/bottom ash direct measurement (in tons), total data 1 year.	- Primary data from PT Pupuk Kaltim	Specific data	None
		Transportation (distance and load) of fly ash/bottom ash to third party contractors, total data is 1 year.		Specific data	None
Power plant Steam Boiler	Water/Gas	Primary data based on measurement (flowmeter), total consumption data for 1 year	-	Specific data	None
	Solid waste, if using coal fuel	Fly ash/bottom ash direct measurement (in tons), total data 1 year.	-	Specific data	None
		Transportation (distance and load) of fly ash/bottom ash to third party contractors, total data 1 year.		Specific data	None
	Air Emission	Emission composition is direct measurement primary data based on sampling analysis every 6 months, 2 samples in 1 year	-	Specific data	None
		Air emission flow rate data based on the results of sampling 6 every 6 months, 2 samples in 1 year.		Specific data	None
Steam Boiler Generation	Air Emission	Primary Data Emission composition and flow rate based on Continuous Emission Monitoring System (CEMS), total data for 1 year.	-	Specific data	None
Power plant Steam Boiler		Avoidance data	The significance of the environmental impact is assumed to be small so that it can be avoided.	Specific data	None

Environmental Product Declaration 2021 - 2026 PT Pupuk Kalimantan Timur

Southeast Asia EPD 20

Production of Plants Air and Air Instruments	Steam input con- sump- tion data	Primary data Direct measurement based on flowmeter, total data 1 year.	-	Specific data	None
		The electricity used is electricity generated from the electricity generation process	-	Specific data	None
Consump- tion of Plant Air and Air Instrument	tion	The total production of air instruments is the primary direct measurement data based on the flowmeter, the total data is 1 year.		Specific data	None
		Water instrument consumption data is a generic data based on the calculation of total consumption divided by the number of instruments proportionally.	-	Specific data	None
Consump- tion of Plant Air and Air Instrument	tion	Total production of plant water is direct measurement primary data based on flowmeter, total data is 1 year. Consumption of Plant Air is generic data based on the calculation of Total Production of Plant Air divided by the total number of processes that use Plant Air proportionally.	-	Specific data	None
		Total production of plant water is direct measurement primary data based on flowmeter, total data is 1 year. Consumption of Plant Air in Urea or Ammonia Process is Primary Direct Measurement Data based on flowmeter, total data is 1 year. Consumption of Plant Air in other Processes is generic data based on the calculation of the Difference between Total Production of Plant Air and Consumption of Urea or Ammonia Processes divided by the total number of other processes that use Plant Air proportionally.	One of the plant water consumption is the result of direct measurement, the rest is generic data calculated from the results.	Specific data	None

•••

Water Treatment	Electric- ity con- sump- tion	Electricity consumption data is Primary generic data based on the results of the proportional calculation of electricity consumption in the utility process, Total data 1 year (in kwh)	- Only the electricity consump- tion of the whole plant is calculated	Specific data	Only the electrici- ty consumption of the whole plant is calculated
	• Con- sump- tion of chemi- cals	Chemical consumption data is primary data, total data is 1 year.	Chemical consump- tion data has been included in the report	Specific data	Chemical consumption data has been included in the report
	Sludge is processed into landfill into Emission to Soil	Sludge mass data is primary data based on extrapolation from sampling data, total data is 1 year.	- PT Pupuk Kaltim does not produce significant sludge waste	Specific data	PT Pupuk Kaltim does not produce significant sludge waste
	Solid waste, if using coal fuel	Fly ash/bottom ash direct measurement (in tons), total data 1 year.	-	Specific data	None
		Sludge composition data is primary data based on sampling data from TCLP PP no. 101/Year 2014.		Specific data	None

Table D Sources of data for products generated from the system

Product	Measurement	Unit	Period	2019	Scope	Double Counting
Ammonia	Flowmeter	ton	1 Year	Ammonia weight by flowmeter	Specific data	None
Urea	Direct measurement (scale)	ton	1 Year	Urea weight by scale	Specific data	None
CO2	Direct measurement /Flowmeter	ton	1 Year	Flow rate based on flowmeter	Specific data	None

Environmental Product Declaration 2021 - 2026

PT Pupuk Kalimantan Timur

.

.

Environmental Product Declaration

PUPUK 🔮 KALTIM

Head Office and Production Centre

Jl. James Simandjuntak No. 1 Bontang 75313, Kalimantan Timur, Indonesia

> Telephone Fax. Website

(0548) 41202, 41203 (0548) 41616, 41626 www.pupukkaltim.com

Jakarta Representative Office

Plaza Pupuk Kaltim Jl. Kebon Sirih Raya No. 6A Jakarta Pusat 10110

Telephone(021) 344 3344-45 (hunting)Fax.(021) 344 3444