
ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH ISO 14025 AND EN 15804:2012+A2:2019 FOR

Mineral Wool Products
By VOLCÁN

Programme:

The International EPD® System EPD registered through the fully aligned regional programme: Hub EPD® Latin America

Programme operator:

EPD International AB, Regional Hub: EPD Latin America

EPD registration number:

S-P-05626

Publication date:

2022-04-28

Valid until:

2027-04-27

VOLCAN

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Programme information

Programme:	The International EPD® System www.environdec.com EPD registered through the fully aligned regional programme: Hub EPD® Latin America www.epd-americalatina.com
Programme Operator	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden EPD Latin America Chile office: Alonso de Ercilla 2996, Ñuñoa, Santiago. Mexico office: Av. Convento de Actopan 24 Int. 7ª, Colonia Jardines de Santa Mónica. Tlalnepantla de Baz, Estado de México, México. C.P. 54050.

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)
Product category rules (PCR): PCR 2019:14 Construction Products and Construction Service VERSION 1.1, 2019-12-20, UN CPC 3779
PCR review was conducted by: Technical Committee of the International EPD® System
Independent third-party verification of the declaration and data, according to ISO 14025:2006:
\square EPD process certification \boxtimes EPD verification
Third party verifier: Ruben Carnerero Email: r.carnerero@ik-ingenieria.com Approved by: The International EPD® System
Procedure for follow-up of data during EPD validity involves third party verifier:
⊠ Yes □ No
Developed by: EDGE Chile Email: contacto@edgechile.com Web: www.edgeenvironment.com

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

What is an EPD?

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life-cycle environmental impact of products.

The following EPD has been developed by Volcán for its mineral wool products.

Company information

Owner of the EPD

Volcán S.A.

Web: https://www.volcan.cl Phone: (56) 600 399 2000

Contact: Ricardo Fernández – Manager of Technical and Sustainable Development Area

Email - rfernandez@volcan.cl

Address: Agustinas 1357 Piso 10 - Santiago, Chile

Description of the organisation

Volcán is a Company leader in constructive solutions that generate habitability, comfort, efficiency and sustainability. Its purpose is to create a better living standard for people in each habituated space, for this and future generations.

Volcán's portfolio of constructive solutions is formed by:

- Solutions for facades and internal division, such as Volcanita for different uses, Volcoglass, fibercement Volcanboard Siding and Volcanboard Deck, and celing access panels;
- Solutions for roofing and climatization, such as asphalt shingles, membranes, felt and ducts;
- Solutions for thermic isolation, acoustic absorption and energy efficiency, such as glass wool Aislanglass, mineral wool Aislan, Sonoglass and Rigitone;
- Solutions for perfect finishes like gypsum plaster, fillers, composites, tape, Levelline corners, Volcastic, Volcabond, and;
- Tools and solutions for passive protection to fire, such as compartments, seals and protection
 of metallic structures.

Additionally, Volcán offers technical advisory to answer the diverse needs of clients.

Sustainability

Responsible environmental management, protection of the environment and natural resources are a strategic priority for Volcán. This is why in 2014 the company created a Sustainability division, in charge of registering, controlling and learning about all the events that imply environmental impacts, as well as creating and consolidating a cross wise program called "Sustainable Volcán", formed by pillars structured according to all fields of environmental management, with the goal of configurating a sustainable management of waste, emissions, energy use, water use, noise levels, rainfall control, among others; in order to achieve a responsible environmental management.

At the moment, Volcán has the following ISO Standards:

- ISO 9001:2015 Quality management systems Requirements (https://www.volcan.cl/system/files/iso 9001.pdf)
- ISO 14001:2015 Environmental management systems (https://www.volcan.cl/system/files/iso_14001.pdf)
- OHSAS 18001:2007 Occupational Health and Safety Management Systems (https://www.volcan.cl/system/files/ohsas_18001.pdf)
- ISO 50001:2018 Energy management systems
 (https://www.volcan.cl/system/files/certificaciones_iso_50001.pdf)

Additionally, since 2016, Volcán has been developing its Sustainability Report, where sustainability strategic priorities are being addressed within the organization, including analysis of best practices, and research and focus group with internal and external stakeholders. This report is elaborated following Global Reporting Initiative (GRI) guidelines. The report represents a new era for Volcán, where it is not only about responding to the needs of clients, but also a concern about the surroundings and communities. The latest version of the Sustainability Report and be downloaded from the following link:

https://www.volcan.cl/informe-de-sostenibilidad

Name and location of production site(s):

Volcán S.A.

Planta CIVSA- Avenida Concha y Toro 0602, Puente Alto, Región Metropolitana

Product information

Product name

The products included in this EPD are Volcán's mineral wool products

Product identification and description

<u>UN CPC code:</u> 3779 Non- metallic mineral products (including mineral wool).

Main uses of Volcán's mineral wool include thermal insulation and acoustic absorption for concrete floors, ceilings, walls and partitions.

Table 1 shows the different products covered in this study, with the specifications, most common uses and also thermal conductivity and resistance.

Table 1- Characteristics of mineral wool products covered in the study

Product	Short description and application	Wide (m)	Length (m)	Thickness (mm)	Weight (kg/m²)	Thermal conductivity (W/m*K)	Thermal resistance (m ² *K/W)
AISLAN Colchoneta libre (Illustration 1)	Flexible panel without lining. Easy installation and great flexibility.	0.5	1.2	50	1.80	0.040	1.22
AISLAN Colchoneta papel 1 cara (P1C) (Illustration 2)	Flexible panel with a waterproof kraft paper on one its faces, which acts as a steam barrier, avoiding condensation of surfaces.	0.5	1.2	50	1.80	0.040	1.22
AISLAN Colchoneta papel 2 caras (P2C) E50 R122 (Illustration 3)	Flexible panel with kraft paper on both faces. One is waterproof to act as a steam barrier, avoiding condensation of surfaces; while the other is not waterproof but its designed for better mechanical resistance.	0.5	1.2	50	1.80	0.040	1.22

Illustration 1- AISLAN Colchoneta Libre

Illustration 2- AISLAN Colchoneta Papel 1 Cara

Illustration 3- AISLAN Colchoneta Papel 2 Caras

Content information

Table 2 presents the composition of 1 m² of Volcán's mineral wool products as well as packaging materials. No dangerous substances from the candidate list of SVHC are included in the product.

Table 2- Product components

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Copper slag	1.59	0%	0%
Paper	0-0.08	0%	100%
Binder	0.11	0%	0%
Others	0-0.007	0%	0%
TOTAL	1.8	0%	5%
Packaging materials	Weight, kg	Weight-% (versus the prod	duct)
Polyethylene	0.03	2%	
TOTAL	0.03	2%	

Dangerous substances from the candidate list of SVHC for Authorisation	EC No.	CAS No.	Weight-% per functional or declared unit
Not applicable			

LCA information

A life cycle assessment is a technique for assessing the environmental aspects and potential impacts associated with a product. By considering potential impacts throughout the life cycle of a product (upstream and downstream), the analysis avoids the shifting of burdens from one type of environmental impact to another, from one political region to another and from one stage to the other.

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life cycle environmental impacts of products. The following information describes the scope and methodology of this EPD for Volcán's mineral wool products.

Declared unit

This EPD has a cradle to gate with options approach, with a declared unit of 1 m² of mineral wool products installed in Chile.

Reference service life

The typical Volcán mineral wool product life is assumed to be the life of the building or 50+ years (Rockwool International, 2020), (Window World, 2017).

Geographical scope

The geographical scope of this EPD is Chile.

Time representativeness

The information collected for the analysis is 2020, considering the production of all products in this year.

Database(s) and LCA software used

The inventory data for the process are entered in SimaPro LCA program and linked to the pre-existing data for the upstream feedstocks and services. Data were selected per geographic relevance from ecoinvent 3.6 database (Ecoinvent Centre, 2019).

Description of system boundaries

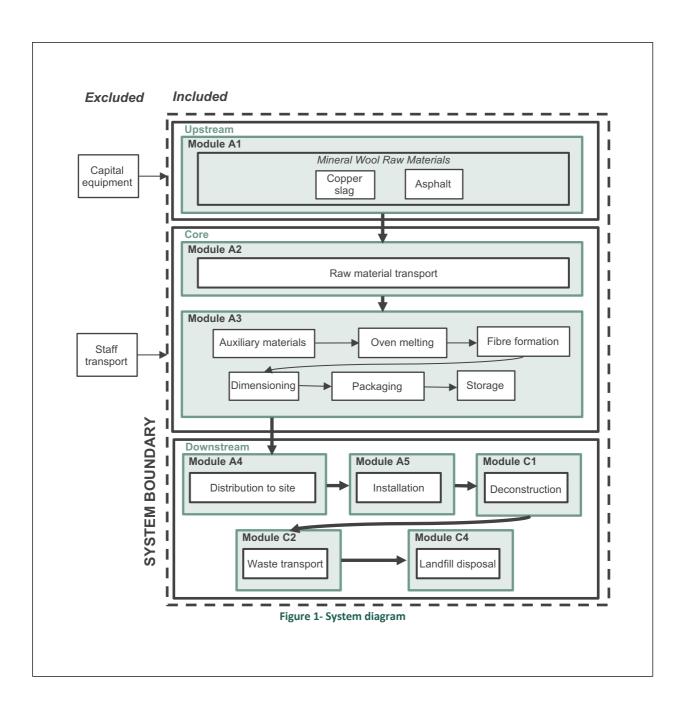
This EPD is cradle to gate grave, however, given that some of the modules are not applicable for Volcán's mineralwool products, the scope is cradle to gate with options¹. Table 3 has the detail of the modules included. The following life cycle stages have not been declared, as they are deemed not applicable for Volcán: Material emissions from usage (B1); Repair (B3); Replacement (B4); Refurbishment (B5), Operational energy use (B6) and Operational water use (B7)

In the case of Waste processing (C3) and Reuse, recycle or recovery (D) these have been included in the analysis; however, they are both considered to be 0 due to a conservative scenario of all products going to landfill. This scenario responds to Volcán not having a reuse, recovery, recycling take back program for its products. Also on a national level, official data from the government in terms of circular economy in the construction and demolition sector indicates that the industry is very behind in this area. On one hand, the baseline is not very clear, since only 50% of companies declare their waste, only 8.4% of that is valorised, and within that the only materials with relevant data are steel, wood, other metals, and stone and gravel (Gobierno de Chile, 2020). Thankfully, this scenario could change

¹ Cradle to gate with options, modules C1–C4, module D and with optional modules (A1–A3 + C + D and additional modules). The additional modules may be one or more selected from A4–A5 and/or B1–B7.

in the future due to the Roadmap on Circular Economy for the Construction and Demolition Sector, where targets are a 30% valorisation of waste for 2025 and 70% for 2035.

Table 3- Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation


	Pro	duct st	age	prod	ruction cess ige													
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential	
Module	A1	A2	А3	A4	A 5	В1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D	
Modules declared	х	х	х	х	х	NR	х	NR	NR	NR	NR	NR	х	х	x	х	х	
Geography	mostly Chile, b			Chile							Chile						NA	
Specific data used	,	,	99.4%														-	
Variation – products	+-3%	% betwee	en all pro average	ducts and	d the	-	-	-	-	-	-	-	-	-	-	-	-	
Variation – sites	Not ap	plicable,	only one	e producti	on site											-		

System diagram

Figure 1 presents the system diagram, including the manufacturing process. The steps are presented below:

- **Oven melting:** raw materials enter a melting oven operated with natural gas. A lava is created by adding oxygen and reaching 1300°C.
- **Fiber formation:** the lava from the previous process enters a fiber formation process, which is a spinning machine that transforms the lava into fiber. Binder is added to avoid separation. The fiber with binder passes through a conveyer belt to a pendulum machine that distributes the mineral wool and stacks it. Afterwards, the mineral wool passes a roller to be compressed.
- **Dimensioning:** this process includes polymerization, covering application and dimensioning. Compressed mineral wool enters an oven to dry. Then the paper is added (if applicable) when the wool goes through a conveyer belt. Afterwards, guillotines cut the wool and provide the adequate dimensioning.
- **Packaging & storage:** final products are packed in polyethylene bags and carried to storage with forklifts.

Foreground data sources and quality

Foreground data on raw material requirements, manufacture and distribution was provided by Volcán for the year 2020. Background data was retrieved from ecoinvent 3.6, which dates from 2019, for processes occurring in Chile and countries supplying raw materials. In compliance with the relevant PCR, generic processes were used for feedstock materials.

Data quality is considered medium to good. More details in Table 4 below.

Table 4- Foreground data sources and quality

Product data	Module A1	Module A2	Module A3	Module A4	Module A5	Module B	Module C
uata	A1						

Data	Range and physical properties	Raw material inputs Energy inputs	Transportation from national and overseas suppliers to Volcán's installations	Water inputs Consumable inputs Waste outputs Internal transport distances Emissions	Distribution information	Ancillary materials and energy for installation	Ancillary materials and energy for deinstallation	End of life of products
Source	Collected by Volcán staff for 2020	Collected by Volcán staff for 2020	Supplier locations provided by Volcán staff for 2020. Distances calculated with online tool. Transport specifications assumed from ecoinvent 3.6 processes.	Collected by Volcán staff for 2020	Collected by Volcán staff for 2020	Estimation s based on products description and use made by Volcán staff	Estimations based on products description and use made by Volcán staff	Conservative assumptions given no take back scheme and low recyclability in Chile
Quality	Good.	Good.	Good.	Good.	Good	Medium	Medium	Medium

Exclusion of small amounts and cut off criteria

Environmental impacts relating to personnel, infrastructure, and production equipment not directly consumed in the process are excluded from the system. All other reported data were incorporated and modelled using the best available life cycle inventory data.

No other cut offs were necessary for the modules included in this EPD.

Allocation

For Volcán's mineral wool production there are no co-products from production and therefore allocation issues were avoided. Copper slag is a raw material for the prodution of mineral wool, and it's a co- product of the copper industry. For allocation, economic allocation was selected given the price difference between copper and slag. The allocation values are as follows²:

- Copper: 99.5%
- Slag: 0.5%

² Copper selling value from: https://www.cochilco.cl/Paginas/Estadisticas/Bases%20de%20Datos/Precio-de-los-Metales.aspx

Copper slag value obtained from Volcán.

Environmental Information

Potential environmental impacts

- Module A1+A2 (raw materials and energy) has the highest impact contribution to most environmental impacts (13 out of 14 indicators, with an average 72% contribution among them). The highest contributions are to freshwater eutrophication (92%), acidification potential (88%) and global warming potential- total (83%). Copper slag and coke are the main responsible for freshwater eutrophication (50% and 33%, respectively) because of waste treatment in the copper (sulfidic tailing) and coal (spoil) mining processes. Coke is also the key contributor to acidification (53%), due to emissions in the coke production process, and to total global warming potential (64% contribution to the whole life impact of the product, as can be seen in Figure 2). Electricity has a 11% total global warming potential contribution, followed by natural gas with 7% contribution.
- Module A3 (manufacturing and packaging) has the second highest contribution, although considerably lower than Module A1+A2 (average 23% contribution across the different indicators). Among the highest impacts are global warming potential- land use and land use change (35%) and water depletion potential (44%). The binder is the main responsible for both impacts.
- Modules A4 (transport to site), A5 (installation), C2 (transport to disposal) and C4 (disposal) have a low contribution to most impacts.

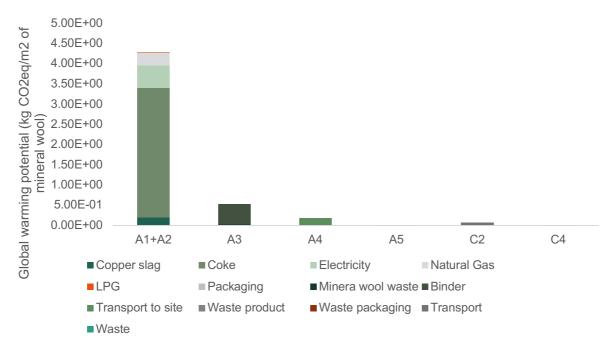


Figure 2- Input contribution to global warming potential, by module for 1 m² of AISLAN Colchoneta libre E50 R122

Resource use

• Module A1+A2 (raw materials and energy) has the highest contribution to total use of non-renewable energy, with 72% of the total, mostly because of the coke (70%), followed by electricity (14%) and natural gas (11%), as can be seen in Figure 3. This module also presents an important impact in terms of use of net fresh water (49%), because of the relevance of reservoir hydro energy in the Chilean electricity grid³.

³ 12% according to the latest statistics by the Ministry of Energy of Chile (Ministerio de Energía, 2020)

- Module A3 (manufacturing and packaging) has the second highest impact to total use of nonrenewable energy (22%) and use of net fresh water (48%). In both indicators, the binder generates the highest contribution (78% and 90%, respectively).
- Modules A4 (transport to site), A5 (installation), C2 (transport to disposal) and C4 (disposal) have a low contribution to most impacts.

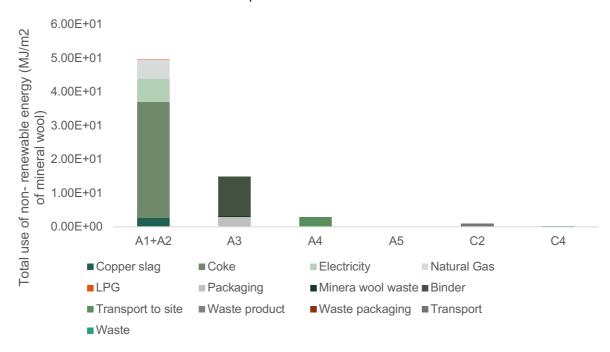


Figure 3- Input contribution to total use of non- renewable primary energy, by module for 1 m² of AISLAN Colchoneta libre E50 R122

Waste and Output flows

- Module A3 (manufacturing and packaging) and C4 (disposal) have the highest contribution to non- hazardous waste disposed (Figure 4, 39% and 36% contribution). As previously mentioned, the manufacturing process generates significant amount of waste to landfill because machinery is not adapted to the specifications of the product. On the other hand, the high impact of the disposal is due to the conservative assumption that all products go to landfill at the end of life.
- Module A1+A2 (manufacturing and packaging) has significant contribution to hazardous waste (62%) and radioactive waste disposed (70%). Coke is the main contributor to both (73% and 89%, respectively) because of waste in the generation process.
- Modules A4 (transport to site) only has 8% contribution to hazardous waste and 11% to radioactive waste disposed, related to the production of fossil fuels that generates this type of waste.

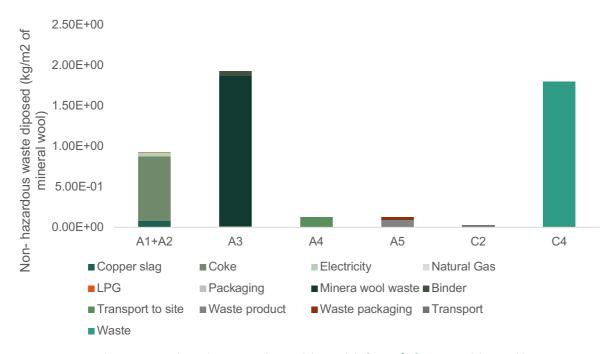


Figure 4- Input contribution to non-hazardous waste disposed, by module for 1 m² of AISLAN Colchoneta libre E50 R122

AISLAN Colchoneta libre R122 E50

Table 5- Potential environmental impact – mandatory indicators according to EN 15804

				Res	ults per 1	m ² of AISL	AN C	olchonet	a libre	R122	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	СЗ	C4	D
GWP-fossil	kg CO ₂ eq.	4.29E+00	6.13E-01	4.91E+00	1.87E-01	4.85E-03	ND	0	ND	ND	ND	ND	ND	0	7.01E-02	0	9.48E-03	0
GWP-biogenic	kg CO ₂ eq.	-5.53E-03	-8.74E-02	-9.29E-02	7.21E-05	1.55E-05	ND	0	ND	ND	ND	ND	ND	0	7.38E-05	0	1.88E-05	0
GWP-luluc	kg CO ₂ eq.	7.23E-04	4.44E-04	1.17E-03	6.73E-05	3.16E-07	ND	0	ND	ND	ND	ND	ND	0	4.43E-05	0	2.64E-06	0
GWP-total	kg CO ₂ eq.	4.29E+00	5.26E-01	4.81E+00	1.88E-01	4.87E-03	ND	0	ND	ND	ND	ND	ND	0	7.02E-02	0	9.50E-03	0
ODP	kg CFC 11 eq.	3.57E-07	5.24E-08	4.10E-07	4.07E-08	3.18E-10	ND	0	ND	ND	ND	ND	ND	0	1.38E-08	0	3.90E-09	0
AP	mol H⁺ eq.	4.22E-02	4.73E-03	4.70E-02	7.79E-04	7.90E-06	ND	0	ND	ND	ND	ND	ND	0	3.95E-04	0	9.00E-05	0
EP-freshwater	kg PO ₄ 3- eq.	9.59E-03	1.14E-03	1.07E-02	1.43E-04	1.53E-04	ND	0	ND	ND	ND	ND	ND	0	8.44E-05	0	1.48E-05	0
EP-freshwater	kg P eq.	2.48E-03	1.98E-04	2.67E-03	1.57E-05	1.11E-07	ND	0	ND	ND	ND	ND	ND	0	1.26E-05	0	9.73E-07	0
EP-marine	kg N eq.	5.02E-03	1.33E-03	6.36E-03	2.29E-04	1.57E-05	ND	0	ND	ND	ND	ND	ND	0	1.17E-04	0	3.11E-05	0
EP-terrestrial	mol N eq.	5.47E-02	1.44E-02	6.91E-02	2.50E-03	2.96E-05	ND	0	ND	ND	ND	ND	ND	0	1.29E-03	0	3.41E-04	0
POCP	kg NMVOC eq.	2.19E-02	4.21E-03	2.61E-02	7.63E-04	9.51E-06	ND	0	ND	ND	ND	ND	ND	0	4.18E-04	0	9.91E-05	0
ADP- minerals&metals*	kg Sb eq.	6.31E-05	1.20E-05	7.50E-05	4.93E-06	8.46E-09	ND	0	ND	ND	ND	ND	ND	0	1.53E-06	0	8.67E-08	0
ADP-fossil*	MJ	4.65E+01	1.38E+01	6.04E+01	2.76E+00	2.25E-02	ND	0	ND	ND	ND	ND	ND	0	1.00E+00	0	2.65E-01	0
WDP	m ³	5.26E-01	4.29E-01	9.55E-01	8.94E-03	9.94E-04	ND	0	ND	ND	ND	ND	ND	0	4.64E-03	0	1.19E-02	0
Acronyms	Deplet freshw	ion potential o	of the stratosp partment; EP	ntial fossil fuels heric ozone la -marine = Eutro otential of trop resources	yer; AP = Aci rophication po	dification pote tential, fractione; ADP-mine	ential, A on of nu erals&m	ccumulated trients reach etals = Abio	Exceed ing mar	ance; E ine end etion po	P-fresh compa tential	nwater = irtment; for non-	Eutrop EP-terr fossil re	hication pote estrial = Eutr sources; ADI	ntial, fraction ophication po	of nut tential	rients reachir , Accumulate	ng ed

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator. "ND" (Not Declared)

Table 6- Potential environmental impact – additional mandatory and voluntary indicators

				Re	sults per	1 m ² of Als	SLAN	Colchone	ta libr	e R12	22 E50)						
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
GWP-GHG ⁴	kg CO ₂ eq.	4.29E+00	6.13E-01	4.91E+00	1.87E-01	4.85E-03	ND	0	ND	ND	ND	ND	ND	0	7.01E-02	0	9.48E-03	0

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

"ND" (Not Declared)

Table 7- Use of resources

				Re	sults per 1	l m ² of AIS	LAN	Colchonet	a libre	e R12	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	2.64E+00	1.50E+00	4.14E+00	3.08E-02	2.63E-04	ND	0	ND	ND	ND	ND	ND	0	2.30E-02	0	2.14E-03	0
PERM	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
PERT	MJ	2.64E+00	1.50E+00	4.14E+00	3.08E-02	2.63E-04	ND	0	ND	ND	ND	ND	ND	0	2.30E-02	0	2.14E-03	0
PENRE	MJ	4.95E+01	1.48E+01	6.43E+01	2.93E+00	2.40E-02	ND	0	ND	ND	ND	ND	ND	0	1.07E+00	0	2.81E-01	0
PENRM	MJ.	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
PENRT	MJ	4.95E+01	1.48E+01	6.43E+01	2.93E+00	2.40E-02	ND	0	ND	ND	ND	ND	ND	0	1.07E+00	0	2.81E-01	0
SM	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
RSF	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
FW	m ³	1.07E-02	1.06E-02	2.13E-02	2.71E-04	2.37E-05	ND	0	ND	ND	ND	ND	ND	0	1.57E-04	0	2.80E-04	0
	PERI	E = Use of ren	ewable prima	rv enerav exc	ludina renewa	able primary e	nerav r	esources use	d as rav	v mater	ials: PE	ERM = I	Jse of r	enewable pri	mary energy re	esource	es used as rav	N

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

"ND" (Not Declared)

⁴ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 8- Waste production

				Re	sults per 1	l m ² of AIS	LAN	Colchonet	a libre	e R12	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	5.68E-05	7.48E-06	6.43E-05	7.28E-06	3.39E-08	ND	0	ND	ND	ND	ND	ND	0	1.91E-05	0	3.96E-07	0
Non-hazardous waste disposed	kg	9.25E-01	1.93E+00	2.85E+00	1.31E-01	1.29E-01	ND	0	ND	ND	ND	ND	ND	0	2.95E-02	0	1.80E+00	0
Radioactive waste disposed	kg	1.17E-04	2.37E-05	1.40E-04	1.82E-05	1.43E-07	ND	0	ND	ND	ND	ND	ND	0	6.36E-06	0	1.74E-06	0

[&]quot;ND" (Not Declared)

Table 9- Output flows

				Re	sults per '	I m ² of AIS	LAN	Colchonet	a libr	R12	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Material for recycling	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0

[&]quot;ND" (Not Declared)

Table 10- Information on biogenic carbon content

Results per 1 m ² of AIS	LAN Colchoneta libre R12	2 E50
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	0.044
Biogenic carbon content in packaging	kg C	-0.32

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

AISLAN Colchoneta P1C R122 E50

Table 11- Potential environmental impact – mandatory indicators according to EN 15804

				Res	ults per 1	m ² of AISL	AN C	olchonet	a P1C	R122	E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	СЗ	C4	D
GWP-fossil	kg CO ₂ eq.	4.31E+00	7.36E-01	5.05E+00	1.87E-01	4.85E-03	ND	0	ND	ND	ND	ND	ND	0	7.01E-02	0	9.48E-03	0
GWP-biogenic	kg CO ₂ eq.	-5.84E-03	-9.58E-02	-1.02E-01	7.21E-05	1.55E-05	ND	0	ND	ND	ND	ND	ND	0	7.38E-05	0	1.88E-05	0
GWP-luluc	kg CO ₂ eq.	7.31E-04	6.93E-04	1.42E-03	6.73E-05	3.16E-07	ND	0	ND	ND	ND	ND	ND	0	4.43E-05	0	2.64E-06	0
GWP-total	kg CO ₂ eq.	4.31E+00	6.41E-01	4.95E+00	1.88E-01	4.87E-03	ND	0	ND	ND	ND	ND	ND	0	7.02E-02	0	9.50E-03	0
ODP	kg CFC 11 eq.	3.66E-07	6.05E-08	4.27E-07	4.07E-08	3.18E-10	ND	0	ND	ND	ND	ND	ND	0	1.38E-08	0	3.90E-09	0
AP	mol H⁺ eq.	4.24E-02	5.50E-03	4.79E-02	7.79E-04	7.90E-06	ND	0	ND	ND	ND	ND	ND	0	3.95E-04	0	9.00E-05	0
EP-freshwater	kg PO ₄ 3- eq.	9.62E-03	1.40E-03	1.10E-02	1.43E-04	1.53E-04	ND	0	ND	ND	ND	ND	ND	0	8.44E-05	0	1.48E-05	0
EP-freshwater	kg P eq.	2.48E-03	2.46E-04	2.73E-03	1.57E-05	1.11E-07	ND	0	ND	ND	ND	ND	ND	0	1.26E-05	0	9.73E-07	0
EP-marine	kg N eq.	5.04E-03	1.53E-03	6.58E-03	2.29E-04	1.57E-05	ND	0	ND	ND	ND	ND	ND	0	1.17E-04	0	3.11E-05	0
EP-terrestrial	mol N eq.	5.49E-02	1.65E-02	7.14E-02	2.50E-03	2.96E-05	ND	0	ND	ND	ND	ND	ND	0	1.29E-03	0	3.41E-04	0
POCP	kg NMVOC eq.	2.20E-02	4.63E-03	2.66E-02	7.63E-04	9.51E-06	ND	0	ND	ND	ND	ND	ND	0	4.18E-04	0	9.91E-05	0
ADP- minerals&metals*	kg Sb eq.	6.40E-05	1.75E-05	8.15E-05	4.93E-06	8.46E-09	ND	0	ND	ND	ND	ND	ND	0	1.53E-06	0	8.67E-08	0
ADP-fossil*	MJ	4.73E+01	1.53E+01	6.26E+01	2.76E+00	2.25E-02	ND	0	ND	ND	ND	ND	ND	0	1.00E+00	0	2.65E-01	0
WDP	m^3	5.39E-01	4.55E-01	9.95E-01	8.94E-03	9.94E-04	ND	0	ND	ND	ND	ND	ND	0	4.64E-03	0	1.19E-02	0
Acronyms	Deplet freshw	sil = Global Wition potential contractions water end comance; POCP =	of the stratosp partment; EP-	heric ozone la -marine = Euti otential of trop	ayer; AP = Aci rophication po	dification pote tential, fractio ne; ADP-mine	ential, A n of nu erals&m	ccumulated trients reachi etals = Abiot	Exceed ng mar ic deple	ance; E ine end etion po	P-fresh compa tential f	water = rtment; or non-	Eutrop EP-ter fossil re	phication pote restrial = Eutr esources; ADI	ntial, fraction ophication po	of nut tential	rients reachir , Accumulate	ng ed

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator. "ND" (Not Declared)

Table 12- Potential environmental impact – additional mandatory and voluntary indicators

				Re	esults per	1 m ² of Al	SLAN	Colchone	ta P10	C R12	2 E50)						
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
GWP-GHG⁵	kg CO ₂ eq.	4.31E+00	7.36E-01	5.05E+00	1.87E-01	4.85E-03	ND	0	ND	ND	ND	ND	ND	0	7.01E-02	0	9.48E-03	0

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

"ND" (Not Declared)

Table 13- Use of resources

				Re	sults per '	1 m ² of AlS	SLAN	Colchonet	ta P10	R122	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	2.66E+00	2.44E+00	5.11E+00	3.08E-02	2.63E-04	ND	0	ND	ND	ND	ND	ND	0	2.30E-02	0	2.14E-03	0
PERM	MJ	0	1.72E+00	1.72E+00	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
PERT	MJ	2.66E+00	4.16E+00	6.83E+00	3.08E-02	2.63E-04	ND	0	ND	ND	ND	ND	ND	0	2.30E-02	0	2.14E-03	0
PENRE	MJ	5.04E+01	1.64E+01	6.68E+01	2.93E+00	2.40E-02	ND	0	ND	ND	ND	ND	ND	0	1.07E+00	0	2.81E-01	0
PENRM	MJ.	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
PENRT	MJ	5.04E+01	1.64E+01	6.68E+01	2.93E+00	2.40E-02	ND	0	ND	ND	ND	ND	ND	0	1.07E+00	0	2.81E-01	0
SM	kg	0	0.108	0.108	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
RSF	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
FW	m ³	1.10E-02	1.20E-02	2.30E-02	2.71E-04	2.37E-05	ND	0	ND	ND	ND	ND	ND	0	1.57E-04	0	2.80E-04	0
	PFRI	E = Use of ren	ewable prima	rv energy exc	luding renewa	able primary e	nerav r	esources use	d as rav	v mater	ials: PF	RM = I	Jse of r	enewable pri	mary energy r	esource	es used as rav	N

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

"ND" (Not Declared)

⁵ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 14- Waste production

				Re	sults per '	l m ² of AIS	SLAN	Colchonet	ta P10	R12	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	5.71E-05	9.06E-06	6.62E-05	7.28E-06	3.39E-08	ND	0	ND	ND	ND	ND	ND	0	1.91E-05	0	3.96E-07	0
Non-hazardous waste disposed	kg	9.27E-01	1.94E+00	2.87E+00	1.31E-01	1.29E-01	ND	0	ND	ND	ND	ND	ND	0	2.95E-02	0	1.80E+00	0
Radioactive waste disposed	kg	1.21E-04	2.75E-05	1.48E-04	1.82E-05	1.43E-07	ND	0	ND	ND	ND	ND	ND	0	6.36E-06	0	1.74E-06	0

[&]quot;ND" (Not Declared)

Table 15- Output flows

				Re	sults per	1 m ² of Als	SLAN	Colchone	ta P10	R12	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Material for recycling	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0

[&]quot;ND" (Not Declared)

Table 16- Information on biogenic carbon content

Results per 1 m ² of AIS	LAN Colchoneta P1C R12	2 E50
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	-0.076
Biogenic carbon content in packaging	kg C	-0.32

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

AISLAN Colchoneta P2C R122 E50

Table 17- Potential environmental impact – mandatory indicators according to EN 15804

				Res	ults per 1	m ² of AISL	AN C	olchonet	a P2C	R122	E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	СЗ	C4	D
GWP-fossil	kg CO ₂ eq.	4.31E+00	8.60E-01	5.17E+00	1.87E-01	4.85E-03	ND	0	ND	ND	ND	ND	ND	0	7.01E-02	0	9.48E-03	0
GWP-biogenic	kg CO ₂ eq.	-5.84E-03	-1.04E-01	-1.10E-01	7.21E-05	1.55E-05	ND	0	ND	ND	ND	ND	ND	0	7.38E-05	0	1.88E-05	0
GWP-luluc	kg CO ₂ eq.	7.31E-04	9.41E-04	1.67E-03	6.73E-05	3.16E-07	ND	0	ND	ND	ND	ND	ND	0	4.43E-05	0	2.64E-06	0
GWP-total	kg CO ₂ eq.	4.31E+00	7.56E-01	5.07E+00	1.88E-01	4.87E-03	ND	0	ND	ND	ND	ND	ND	0	7.02E-02	0	9.50E-03	0
ODP	kg CFC 11 eq.	3.66E-07	6.87E-08	4.35E-07	4.07E-08	3.18E-10	ND	0	ND	ND	ND	ND	ND	0	1.38E-08	0	3.90E-09	0
AP	mol H⁺ eq.	4.24E-02	6.26E-03	4.86E-02	7.79E-04	7.90E-06	ND	0	ND	ND	ND	ND	ND	0	3.95E-04	0	9.00E-05	0
EP-freshwater	kg PO ₄ 3- eq.	9.62E-03	1.67E-03	1.13E-02	1.43E-04	1.53E-04	ND	0	ND	ND	ND	ND	ND	0	8.44E-05	0	1.48E-05	0
EP-freshwater	kg P eq.	2.48E-03	2.94E-04	2.77E-03	1.57E-05	1.11E-07	ND	0	ND	ND	ND	ND	ND	0	1.26E-05	0	9.73E-07	0
EP-marine	kg N eq.	5.04E-03	1.73E-03	6.78E-03	2.29E-04	1.57E-05	ND	0	ND	ND	ND	ND	ND	0	1.17E-04	0	3.11E-05	0
EP-terrestrial	mol N eq.	5.49E-02	1.85E-02	7.34E-02	2.50E-03	2.96E-05	ND	0	ND	ND	ND	ND	ND	0	1.29E-03	0	3.41E-04	0
POCP	kg NMVOC eq.	2.20E-02	5.05E-03	2.70E-02	7.63E-04	9.51E-06	ND	0	ND	ND	ND	ND	ND	0	4.18E-04	0	9.91E-05	0
ADP- minerals&metals*	kg Sb eq.	6.40E-05	2.30E-05	8.70E-05	4.93E-06	8.46E-09	ND	0	ND	ND	ND	ND	ND	0	1.53E-06	0	8.67E-08	0
ADP-fossil*	MJ	4.73E+01	1.68E+01	6.41E+01	2.76E+00	2.25E-02	ND	0	ND	ND	ND	ND	ND	0	1.00E+00	0	2.65E-01	0
WDP	m^3	5.39E-01	4.82E-01	1.02E+00	8.94E-03	9.94E-04	ND	0	ND	ND	ND	ND	ND	0	4.64E-03	0	1.19E-02	0
Acronyms	Deplet freshw	sil = Global William dion potential convater end com ance; POCP =	of the stratosp partment; EP-	heric ozone la -marine = Euti otential of trop	yer; AP = Aci rophication po	dification pote tential, fractio ne; ADP-mine	ential, A on of nu erals&m	ccumulated trients reachi etals = Abiot	Exceed ng mar ic deple	ance; E ine end etion po	P-fresh compa tential f	water = rtment; or non-	Eutrop EP-teri fossil re	phication pote restrial = Eutr esources; ADI	ntial, fraction ophication po	of nut tential	rients reachir , Accumulate	ng ed

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator. "ND" (Not Declared)

Table 18- Potential environmental impact – additional mandatory and voluntary indicators

				Re	esults per	1 m ² of Als	SLAN	Colchone	ta P20	C R12	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
GWP-GHG ⁶	kg CO ₂ eq.	4.31E+00	8.60E-01	5.17E+00	1.87E-01	4.85E-03	ND	0	ND	ND	ND	ND	ND	0	7.01E-02	0	9.48E-03	0

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

"ND" (Not Declared)

Table 19- Use of resources

				Re	sults per	1 m ² of AIS	SLAN	Colchonet	ta P2C	R122	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	2.66E+00	3.39E+00	6.05E+00	3.08E-02	2.63E-04	ND	0	ND	ND	ND	ND	ND	0	2.30E-02	0	2.14E-03	0
PERM	MJ	0	3.44E+00	3.44E+00	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
PERT	MJ	2.66E+00	6.83E+00	9.49E+00	3.08E-02	2.63E-04	ND	0	ND	ND	ND	ND	ND	0	2.30E-02	0	2.14E-03	0
PENRE	MJ	5.04E+01	1.80E+01	6.83E+01	2.93E+00	2.40E-02	ND	0	ND	ND	ND	ND	ND	0	1.07E+00	0	2.81E-01	0
PENRM	MJ.	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
PENRT	MJ	5.04E+01	1.80E+01	6.83E+01	2.93E+00	2.40E-02	ND	0	ND	ND	ND	ND	ND	0	1.07E+00	0	2.81E-01	0
SM	kg	0	0.216	0.216	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
RSF	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
FW	m ³	1.10E-02	1.33E-02	2.43E-02	2.71E-04	2.37E-05	ND	0	ND	ND	ND	ND	ND	0	1.57E-04	0	2.80E-04	0
	PERI	E = Use of ren	ewable prima	rv enerav exc	luding renewa	able primary e	nerav r	esources use	d as rav	v mater	ials: PF	RM = I	Jse of r	enewable pri	mary energy r	esource	es used as ray	N

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

"ND" (Not Declared)

⁶ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 20- Waste production

				Re	sults per '	l m ² of AIS	SLAN	Colchonet	a P2C	R12	2 E50							
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	5.71E-05	1.06E-05	6.78E-05	7.28E-06	3.39E-08	ND	0	ND	ND	ND	ND	ND	0	1.91E-05	0	3.96E-07	0
Non-hazardous waste disposed	kg	9.27E-01	1.95E+00	2.88E+00	1.31E-01	1.29E-01	ND	0	ND	ND	ND	ND	ND	0	2.95E-02	0	1.80E+00	0
Radioactive waste disposed	kg	1.21E-04	3.12E-05	1.52E-04	1.82E-05	1.43E-07	ND	0	ND	ND	ND	ND	ND	0	6.36E-06	0	1.74E-06	0

[&]quot;ND" (Not Declared)

Table 21- Output flows

Results per 1 m ² of AISLAN Colchoneta P2C R122 E50																		
Indicator	Unit	A1+A2	А3	Tot.A1- A3	A4	A 5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Material for recycling	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	ND	0	ND	ND	ND	ND	ND	0	0	0	0	0

[&]quot;ND" (Not Declared)

Table 22- Information on biogenic carbon content

Results per 1 m ² of AISLAN Colchoneta P2C R122 E50								
BIOGENIC CARBON CONTENT	Unit	QUANTITY						
Biogenic carbon content in product	kg C	-0.106						
Biogenic carbon content in packaging	kg C	-0.32						

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

References

Ecoinvent Centre, 2019. ecoinvent version 3.6 database, Zurich: ETH, Agroscope, EMPA, EPFL, PSI.

ISO, 2007. Sustainability in building construction - Environmental declaration of building products. ISO 21930:2007, Geneva: ISO.

Sea-Distances.org, 2017. Sea Distances. [Online]

Available at: https://sea-distances.org/

Google, 2017. Maps. [Online].

EPD International, 2019. *Product Category Rules for Construction Products and Construction Services, PCR2019:14*, Stockholm: EPD International.

European Standards, 2019. Sustainability of construction works - Environmental product declarations, CSN EN 15804:2019, Pilsen: European Standards.

EPD International, 2019. *General Programme Instructions for the International EPD System. Version 3.01*, s.l.: s.n.

Gobierno de Chile, 2020. Hoja de Ruta RCD Economía Circular en Construcción 2035, Santiago, CHile: s.n.

Rockwool International, 2020. Durability and stone wool insulation, Denmark: s.n.

Window World, 2017. *How long does insulation last?*. [Online] Available at: https://www.windowworldmn.com/blog/entryid/120/how-long-does-insulation-last [Accessed November 2021].

