

Environmental Product Declaration (EPD®) For "Classico" Extra Virgin Olive Oil Monini S.p.A.

Geographical area of production: Europe Revision date: 16/02/2022 (rev. 5.0)

Geographical area of distribution: World

Publication date: 21/12/2012 CPC code: 21537

Date of validity: 14/02/2026 Registration Number: S-P-00384

An EPD must provide current information and can be updated if conditions change. The declared validity is, therefore, subject to continuous registration and publication on www.environdec.com

1 The All-Italian Story of a Passion

MONINI, THE ALL-ITALIAN STORY OF A PASSION

A passion for quality that dates back over a century

The Monini company is an Italian success story based on tradition and quality. The company was founded in 1920 by Zefferino Monini, who, following his entrepreneurial instinct, decided to establish a business in the town of Spoleto, in the Italian region of Umbria. Thanks to its hills covered with olive groves, from which an oil with an intense yet balanced flavour is obtained, the Spoleto area has always been dedicated to the production of Extra Virgin Olive Oil.

The passion that Zefferino Monini Sr. developed for olives at an early age led him to dedicate himself to the production of Extra Virgin Olive Oil, whereby he founded the company "Zefferino Monini Olio di Oliva" in 1930. The knowledge and

consumption of Extra Virgin Olive Oil at the time was limited and was locally confined exclusively to its areas of production. Most Italians, above all in the larger cities, either out of habit or lack of knowledge, used almost exclusively regular olive oil, rather than the extra virgin variety. By deciding to market Extra Virgin Olive Oil beyond the confines of the Umbria region, Zefferino Monini launched a new trend in the oil industry. Thanks to his initiative and his passion for the natural product of his homeland, together with the exceptional quality of the oil obtained from the hills of Umbria, Zefferino Monini succeeded in writing the first page in the history of the Extra Virgin Olive Oil market. Once brought to the attention of a wider audience. Monini extra virgin olive oil became increasingly

popular and began to be demanded by customers even further afield. The company ceased operations during the war as the product was subject to rationing. Once the distribution of foodstuffs was deregulated in 1945, however, the company's operations continued with renewed energy. It was at this time that Zefferino's sons, Giuseppe and Paolo, joined the company. Giuseppe and Nello flanked their father in his traditional laboratory, learning the all the tricks of the trade.

At the time, shopkeepers sold the product in bulk. Anticipating the future needs of the market, however, the first glass bottles began flanking the traditional demijohns by the year 1950.

The All-Italian Story of a Passion

A historic oil in modern times.

Today Monini is one of the leading companies in the Extra Virgin sector with a 2020 turnover of 145 million euros and more than 110 employees. Almost 94% of the total turnover is achieved with the Monini brand. The strategy started in the 20's by the founder, confirmed and increased by his son Giuseppe, is still carried on by the grandchildren of the founder, Zefferino and Maria Flora who, with the same passion, continue to spread the culture of Extra Virgin Olive Oil in an educational, serious and not only commercial way. For three generations, the

Monini family has been selecting Extra Virgin Olive Oils by choosing only mills where the hygiene conditions, processing facilities and storage of olives and oil are of superior quality.

An avant-garde company in terms of structures, technology and quality control, still animated by artisan passion in order to offer its consumers superior quality. Even today Zefferino Monini personally tastes the oils to select those that will keep the promise of high quality, the same every time, just like his grandfather did.

02 "

II Gruppo Monini

THE MONINI GROUP NORTH AMERICA, POLAND AND AUSTRALIA

A company that symbolizes the Italian Olive Oil Tradition

Just this ability to spread the culture of Extra Virgin Olive Oil and to preserve the most authentic Italian oil art as a symbol of Made in Italy has led the Umbrian company to become a reference point for the sector even outside the national borders.

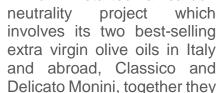
In 2000 Monini North America Inc. was founded, with headquarters in Norwalk, Connecticut and a turnover that today is around 6 million dollars.

Monini Polska is present in Europe, a branch born in 2008 with headquarters in Poznan, Poland.

03 The Company

THE COMPANY

Environmental Policy


Today, Monini is a company that's on the cutting-edge in terms of facilities, technology and quality control, upholding the Italian olive oil tradition thanks to a responsible corporate management model based on environmental sustainability. business ethics and social awareness. particularly to Monini cares environment, as evidenced by the activities that include the installation of a photovoltaic system at the production facility, the provision of energy from certified renewable sources, and the use of recycled glass packaging. Thanks to this policy, Monini has become the first large Italian company obtain an Environmental **Product** Declaration (EPD®).

Monini's environmental policy is based on a simple philosophy: to never deprive nature or the terrain of anything. Because it is precisely nature and the terrain that have provided this Spoleto-based company with its precious raw materials, allowing it to make a name for itself over the past 100 years.

Monini has assumed this exemplary commitment to the environment and its natural fruits in order to ensure that they are preserved for generations to come.

It's the best possible investment that the company could make in order to preserve the values underlying the Monini olive oil tradition over time.

During 2021 Monini started a carbon

make up 67% of the bottles produced in one year by the company. This project represents a totally voluntary commitment,

which Monini started aware of the need to offer a concrete contribution to the fight against global warming.

Packaging plant

The production site of Monini S.p.A. is located in Spoleto (Italy) SS Flaminia Km 129.

Monini S.p.A. produces more than 30,000,000 litres per year, of which about 87% is Extra Virgin Olive Oil. 44% of the 2020 turnover comes from the export market, which involves more than 52 countries. The company covers an area of 22,000 square meters, of which 11,800 square meters are covered, where there are seven packaging lines that guarantee a maximum production capacity of 15,000 litres per hour in various formats and a filtration line for raw materials.

03 The Company

THE COMPANY

Supply chain control

Oils made from olives of different varieties, origins and maturity, and stored under different conditions and for different time frames, naturally possess different characteristics. For this reason. Zefferino Monini Jr., together with some of his closest expert collaborators, select the best oils in a special tasting room on a daily basis, recording the intensity and the different flavour and olfactory characteristics of each oil sampled. Approximately 15,000 oil tasting sessions are held each year during the selection and receipt of the raw materials, as well as before packaging. These control activities are not only limited to the raw materials themselves, but the quality of the final product is also guaranteed by the loyalty, collaboration, and control activities performed by the entire supply chain.

Quality control

A state-of-the-art analytical laboratory monitors the quality and purity of each oil. These highly complex analyses are used to reveal the presence of any oils other than olive oil, as well as the presence of any undesired substances contained within the oils themselves due to treatments with agrochemicals (pesticides, herbicides or fungicides) or simply due to environmental pollution. techniques Modern analytical and

sophisticated equipment allow for contaminants to be detected in tenths of parts per billion: this means that it is possible to detect the presence of even just one gram of a contaminant dissolved in 10,000 tonnes of oil.

The Monini analysis laboratory performs approximately 20,000 sets of analysis per year, controlling approximately 90,000 parameters. Most of the controls are performed upon the incoming product, thus allowing for non-compliant batches of oil to be rejected, while further controls are also carried out during the packaging stage. Subsequently, the quality levels of the oils destined for the national and international markets are sampled and monitored.

CALCULATION OF ENVIRONMENTAL PERFORMANCE

Monini Classico Extra Virgin Olive Oil 1-litre, 0.75 -litre and 0.5 -litre bottles.

This EPD® refers to the product Extra Virgin Olive Oil Classico. In the last five years, on average, Classico Extra Virgin Olive Oil has been produced from olives grown in Italy, Spain, Portugal and Greece. The data used to calculate the environmental performance reported in this EPD® are updated to the olive production and oil extraction campaign of 2020.

Classic Extra Virgin Olive Oil is packed in green glass bottles; primary packaging consists of two paper labels (front and back) applied to the bottle and an aluminium cap with plastic pourer; standard secondary packaging consists of a cardboard tray and a shrink film, whereas tertiary packaging consists of a pallet and a transparent outer film.

In this EPD®, the density of Extra Virgin Olive Oil is considered to be 0.913 kg/litre.

Functional unit

In accordance with PCR 2010:07, the functional unit for the life cycle refers to one (1) litre of Extra Virgin Olive Oil, including its packaging.

GEOGRAPHICAL ORIGIN

Monini Classico Extra Virgin Olive Oil

The supply area for the production of Monini Classico Extra Virgin Olive Oil corresponds to the following countries: (the areas of cultivation are listed in dark green).

Portugal Guarda, Beja, Enora, Portalegre.

Greece Crete, Peloponnese.

CHARACTERISTICS OF THE EXTRA VIRGIN OLIVE OIL

Monini Classico Extra Virgin Olive Oil

The Classico variety is derived from a selection of oils obtained from olives harvested with the right degree of maturity. It is therefore an ideal and versatile complement for cooking, as well as for raw consumption, for a balanced diet, harmonious and rich in flavour.

For Cooking

In cooking and for all uses. Dressing of legumes, cooked vegetables, soups, red meat roasts boiled meat, salads, and bruschettas.

NUTRITION DECLARAT							
Energy	3404 kJ						
	828 kcal						
Fats	92 g						
Of which							
Satured Fatty Acids	14 g						
Monosatured Fatty Acids	69 g						
Polyunsatured Fatty Acids	9 g						
Carbohydrates	0 g						
Of which Sugar	0 g						
Fibres	0 g						
Protein	0 g						
Salt	0 g						
Vitamin E	17 mg*						
* 142% of nutrient reference values							

CHEMICAL AND PHYSICAL PROPERTIES

Monini Classico Extra Virgin Olive Oil

MONINI QUALITY SPECIFICATIONS	Monini values	Values provided by law	Reference standards
Free acidity (% expressed as oleic acid)	0.35	≤ 0.8	(1-2-3)
Peroxides	9.0	≤ 20	(1-2-3)
UV adsorption:			
K ₂₃₂	1.85	≤ 2.5	(1-3)
K ₂₇₀	0.115	≤ 0.22	(1-2-3)
ΔΚ	-0.002	≤ 0.01	(1-2-3)
Waxes (mg/kg)	75	≤ 150	(1-2-3)
Free acidity (% express ad oleic acid)	318		

- (1) REG. (EEC) N.2568/91 on the characteristics of olive oil and relevant methods of analysis
- (2) CODEX STAN 33-1981 Standard for olive oils and olive-pomace oils.
- (3) INTERNATIONAL OLIVE COUNCIL COI/T. 15/NC N.3/Rev. 12 Trade standard applying to olive oils and olive pomace oils

CHEMICAL AND PHYSICAL PROPERTIES

Monini Classico Extra Virgin Olive Oil

MAIN CONTAMINANTS RESIDUES		Monini values	Values provided by law	Reference standards
PAH: Polycyclic Aromatic Hydrocarbons (mg/kg) B(a)P B(a)P B(b)F CHR		< standard limit values	Reg. 1881/2006/UE and further modifications	
		< standard limit values	≤10	Reg. 1881/2006/UE and further modifications
Phthalates (mg	/kg)	<3.0 (sum) <1.0 (each compound)	<3 (add) <1 (each compound)	Internal method
Pesticide residues (mg/kg)		< standard limit values	Values of the reference standard	Reg. 396/2005/UE and further modifications

BOUNDARIES OF THE SYSTEM

Upstream, core and downstream processes

In accordance with PCR 2010:07, the life cycle of the Extra Virgin Olive Oil is divided into the Upstream, Core and Downstream phases.

The Upstream phase includes the following processes:

 The operations required for the establishment of the olive groves and the transformation of the terrain's use were not taken into consideration because the life cycle of an olive grove is greater than 25 years.

- The production of the olives used later in the Core process, involving the following processes:
- The production of the inputs utilized, such as for example, fertilisers and agrochemical products.
- Waste management. The use of the wood resulting from pruning or from the end of the olive trees' life cycle.
- The transportation of the inputs to the region and to the olive production sites.

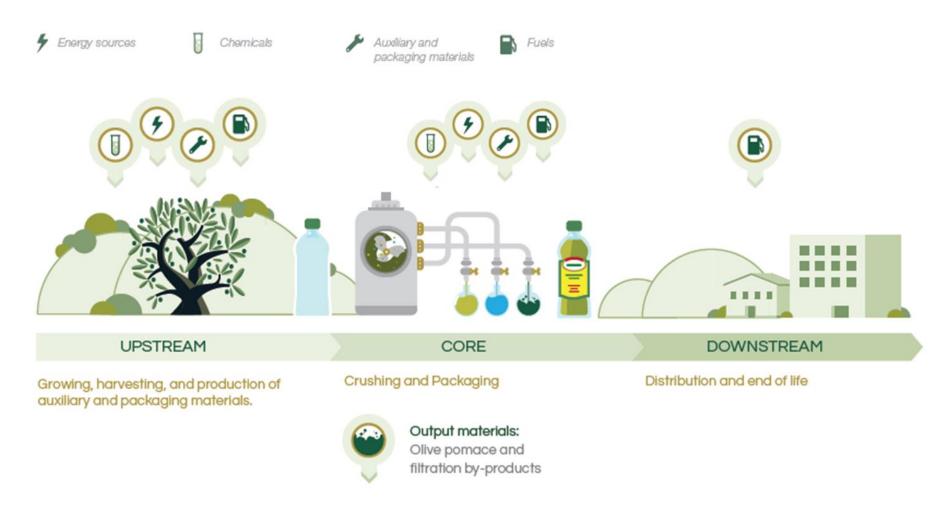
- The extraction and use of the water.
- The auxiliary materials used to harvest the olives (nets, cages, detergents, etc.).
- The production of the fuel and electricity used at the plantations.
- The production of packaging and auxiliary materials used for extracting oil at the oil mill and for filtration and fine filtering at the Monini plant.

BOUNDARIES OF THE SYSTEM

Upstream, core e downstream processes

The Core phase includes the following processes:

- The transportation of the olives to the mill
- The extraction of the oil from the olives.
- Waste management.
- The preservation of the oil.
- Transportation to the packaging plant.
- The packaging of the oil at the Monini facility in Spoleto.
- The transportation of the raw materials and energy inputs to the Core process.


In accordance with the 2010 PCR: 07, the construction of machinery (more than three years old) and the factories were not included. In addition, the packaging of chemical products and auxiliary materials used during the cultivation, at the olive mill and

The Downstream phase includes the following processes:

- Transportation from the final production/ storage site to a distribution platform.
- Transportation to the retailer.
- Waste management.
- The use of the product.
- The recycling or disposal of the packaging/materials after use.

in the packaging stage, as well as the product labels and neck collar applied on the oil bottles, the shrink film and the adhesives applied to the pallet, they were not included for the cut-off rule (which excludes material flows of less than 1% of the total inventory).

BOUNDARIES OF THE SYSTEM

DATA QUALITY

The inventory analysis was conducted using specific data from Monini S.p.A. and the companies involved in the study regarding the cultivation and harvesting of olives, oil extraction and storage, transport to the bottling site, packaging and distribution of the product.

Selected generic data were used from:

- Council Regulation (EC) No. 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No. 2092/91.
- The Methodology of the FAO Study: "global food losses and food waste extent, causes and prevention" FAO, 2011 by SIK Swedish Institute for Food and Biotechnology, 2013.
- -Eurostat,

http://epp.eurostat.ec.europe.eu/portal/page/portal/eurostat/home

- International databases (in particular Ecoinvent 3.6) with regard to the production processes of semi-finished products, packaging materials, electrical and thermal energy and means of transport, as well as related to water supply and end-of-life.

In accordance with the General Program Istructions of the International EPD® System, version 3.01 dated 18/09/2019, the contribution of the generic other data to the impact indicators is less than 10%.

In addition, transportation distance data were calculated using the online Google Maps and Sea Rates calculator for land and sea transportation distances, respectively.

DATA QUALITY

The Monini supply chain

The direct relationship with the private or cooperative mill (sometimes through the figure of a mediator to coordinate logistical and economic aspects) does not help to determine a favourable situation for data collection for the process unit belonging to the farm, involved in the cultivation of the olive tree. Despite this, compared to the previous version, in this EPD® the sample of suppliers (growers and mills) who actively participated in the collection of specific data has been maintained.

The availability of a more representative sample has greatly improved the quality of the data processed, which have been refined so as to be probably very close to the real value.

Comparison of EPDs[®] within the same product category The oils included in this document are based on the PCR 2010:07 version 3.0 specification updated on 03/31/2020, developed in accordance with the General Program Istructions of the International EPD® System, version 3.01 dated 09/18/2019.

EPDs® within the same product category but from different programs may not be comparable, nor may EPDs® within the same product category and same program but that differ in packaging format.

CULTIVATION AND HARVESTING OF THE OLIVES

Puglia, Italy

In terms of Extra Virgin Olive Oil production, Puglia is Italy's leading olive oil producing region. The region's most productive provinces are those of Foggia, Bari and Barletta-Andria-Trani. On the plains of Tavoliere, the olive growing process is a form of specialized farming with a regular line configuration, incorporating an irrigation system with the vase pruning system, and harvesting is mainly performed using pneumatic combs.

The olive-growing techniques in the provinces of Bari and Barletta-Andria-Trani tend towards a more modern style of olive-growing, with the tree arrangements assuming an intensive and fairly regular configuration, and an average of about 300 trees/ha cultivated using the vase

pruning system. Harvesting is performed mechanically, using harvesting machinery.

Spain

In Spain there are two systems of cultivation: traditional and super intensive. The cultivars grown according to the traditional system are the Picual and Cornicabra varieties, which are still found in the areas of Jaen (Andalusia) and Toledo/Ciudad Real (Castilla la Mancha). With regard to the super intensive system, there are two cultivars, the Arbequina and Arbosana varieties, with reduced vegetative development, to the point that they are planted with a density of 1,600 - 2,000 trees/ha.

Super Intensive System is a technology of cultivation of olive trees which took origin

in this Country in the early 90s and that allows a considerable increase in profitability compared to conventional systems. When they made the first plantations the doubts that arose on the new model of cultivation were many: planting lifetime, selection of a suitable area, choice of appropriate olives varieties, system of pruning, fertilization, irrigation.

The experience gained over the years in different situations has allowed us to refine the main technical criteria and to dispel the many initial doubts. The keys to the success of the super intensive system are: 100% mechanized harvest, the rapid entry into production (starting from 2nd-3rd year of the campaign), a consistently high profitability and Extra Virgin Olive Oil good quality.

CULTIVATION AND HARVESTING OF THE OLIVES

Greece

In Greece, the areas dedicated to the cultivation of olive groves have increased steadily over the years, thanks to the planting of new high-density rows of 250-300 trees/ha. The olive groves involved in the production of olive oil have been widely used in many semi-mountainous and coastal areas. The Koroneiki olive is considered to be the best variety for the production of oil. Trees have a short trunk pruned sapling like. It has its origins in the

Korone area, in Messinia region, Peloponnese.

The tendency is to enhance production through mechanisation, land levelling and localised irrigation, using the wells belonging to the various farms.

The ancient olive groves with large centuries-old trees have been replaced by new and intensive plantations, while the more traditional plantations can still be found on the smaller islands and in the higher mountainous regions.

Portugal

Cultivation of the olive tree in Portugal has advanced considerably in recent decades thanks to the exploitation of EU funding. It predominantly involves intensive and super-intensive fully mechanised cultivation techniques, with the plant-by plant-irrigation of three main cultivars, which, in order of importance, are the Arbequina, the Fenugreek and the Cobrançosa varieties.

EXTRACTION OF THE OIL FROM THE OLIVES

Washing, crushing and malaxation

The Extra Virgin Olive Oil production technique is almost identical in all the considered Countries except for some difference due to local traditions.

Washing and pressing

When the olives arrive at the mill they are immersed in a tank of water or, in modern plants, in special washing machines that maintain forced water movement in order to improve the results of the operation. After washing, the next step is the crushing, which in modern continuous-cycle facilities is carried out using a hammer crusher. With this system, the pulp is broken down by the impacts of

high-speed rotary devices, and only in part by the mechanical action of the pit's fragments.

The processing is performed within an extremely short time frame.

Malaxation

Malaxation or mixing is an operation that follows crushing, the purpose of which is to break down the emulsion between water and oil, thus allowing the micelles of oil to merge into larger droplets, which tend to separate spontaneously from the water. This is performed in machines called mixers or maloxers. The technical reference parameters during the mixing

stage are the temperature and the duration. The temperature is critical for the yield in the subsequent extraction process and is closely related to the stability of the water-oil emulsion. With a low degree of emulsification. malaxation can performed at temperatures slightly higher than the ambient temperature (from 22-24°C to 27°C); this is referred to as malaxation or cold extraction. With more stable emulsions, a more aggressive heating of the paste is required, with temperatures ranging from 27°C to 30°C. The yield of the extraction increases with the temperature of the malaxation, but the quality of the paste decreases once the temperature of 30°C is reached.

04 Calculation of envi

Calculation of environmental performance

EXTRACTION OF THE OIL FROM THE OLIVES

From malaxation to centrifugation

Centrifugation

The olive paste resulting from the malaxation process is subjected to centrifugation in a rotating conical drum, with a horizontal axis commonly referred to as a decanter.

Due to the different specific weights of water, oil, and olive pulp, the centrifugation separates them over 2 to 3 phases. The 3-phase decanter is the most consolidated and utilized type found in Italy.

In this case, three parts are separated by centrifugation:

- the olive pomace;
- the oil must, containing a small amount of water;

 the vegetation water, containing a small amount of oil.

This system requires the oil paste to be diluted in advance with mains water. The 2-phase decanter is widespread throughout Spain, Portugal and Greece, and differs from the 3-phase decanter due to the decreased use of water. The centrifugation process separates only two parts:

- the olive pomace and the vegetation water;
- the oil must, containing a small amount of water.

The oil must, obtained from the extraction, always contains a residual amount of water, which is separated by the effect of

the different densities of the two liquids through decanting or centrifugation.

Vertical centrifugation is the system used in all plants to separate the oil from the water. In this process, which is performed in vertical centrifugal separators, both the oil must and the vegetation water obtained from the horizontal centrifugation are processed.

PACKAGING OF THE OIL

From storage to shipment

Storage

Monini S.p.A. has about 170 storage tanks for a total capacity of 10,000,000 litres, all stainless steel, interconnected and equipped with electronic level probes in order to continuously monitor the quantities of oil contained and those transferred from one tank to another.

All the tanks are temperature controlled and are connected to an inert gas (nitrogen) distribution system that ensures optimal product preservation.

Filtering

Immediately before packaging the oils are subjected to a double filtration process. Filtering does not alter the quality and nutritional characteristics of the oil, but rather ensures better preservation over time.

Packaging

Monini S.p.A. has 7 modern packaging lines, with a daily average bottling capacity of 200,000 litres, and a maximum capacity of 260,000 litres over 24 hours. They allow the oil to be bottled in 100ml,

250ml, 500ml, 1L, 3L, and 5L containers, in order to satisfy the various needs of the market.

Every packaging line is equipped with video cameras, which systematically detect any foreign bodies present within the containers, monitor the presence of the label and cap, and verify the production batch and the oil level of each single container.

Finally, ultra-modern automatic laserguided shuttles transfer the pallets of packaged oil to the warehouse, where they will await final shipment.

DISTRIBUTION AND USE PHASE

The final stages of the product's life cycle

Distribution

The product is distributed throughout Italy and throughout the world. The transport distance was calculated considering the weighted average distance specific to each bottle size.

Use phase

The use phase of extra virgin olive oil is excluded according to PCR, however a percentage of oil which may not be consumed or disposed, after cooking, has

been considered. A loss of 4% of the oil contained in the bottle was estimated, according to the 2013 study by Gustavsson et al, and in the calculation model it was considered that this quantity is treated in part by the municipal water purification system and in part sent to recovery.

End of life of packaging and oil

The end-of-life scenario for packaging has been modelled using official statistical

data from ISPRA and Eurostat (referring to 2019) according to the recovery, incineration and landfill disposal methods of the individual materials making up the packaging. The processes of waste disposal in landfills and incinerators have been taken from the Ecoinvent database and are specific to the packaging material; for the recycling process only, the transport assumed to be equal to 100 km travelled with trucks with a capacity between 16 and 32 tons has been considered.

ENVIRONMENTAL PERFORMANCE

List of the impact categories/1

The environmental performance of Monini products, as detailed below, is based on the Life Cycle Assessment (LCA) methodology and has been calculated in accordance with ISO 14040 and 14044, the International EPD® system and PCR 2010:07. The management and updating of environmental data concerning EPD® products are regulated by a specific procedure within the Monini Management Systems Manual.

Environmental impact indicators

The purpose of impact assessment is to highlight the extent of the environmental changes generated by the releases into the environment and the consumption of resources caused by production activities. The

fundamental objective is to attribute the consumption and emissions obtained in the inventory phase to specific impact categories.

The following is a list of impact categories Resource consumption

A count of the total amount of energy and material resources used throughout the life cycle of products. These are divided into primary (non-renewable and renewable), secondary, and water consumption.

Global warming

It is caused by the presence of greenhouse gases in the atmosphere that absorb the infrared radiation emitted by the earth, causing an increase in average temperature. The anthropogenic greenhouse gas of greatest concern is CO2. The method of characterization of the impacts of greenhouse gases is based on what is stated by the Intergovernmental Panel on Climate Change (IPCC) that uses as an impact indicator the kg of CO2 equivalent compared to a time horizon of 100 years (GWP 100 years, Global Warming Potential).

The GWP is based on a relative scale that compares the gas considered with an equal mass of CO2, whose GWP is by definition equal to 1. Fossil, biogenic and land-use change emissions are reported separately.

ENVIRONMENTAL PERFORMANCE

List of the impact categories/2

Formation of photochemical smog

This is a phenomenon typical of peak hours in big cities, guite pronounced in the summertime, when the sun's rays cause the unburned hydrocarbons and nitrogen oxides present in the exhaust fumes to react, thus resulting in harmful ozone. The method for characterizing the impact of photo-chemical smog is based on that of Nations United Economic the Commission for Europe, which uses kg of equivalent C₂H₄ as an impact indicator. POCP is based on a relative scale, which compares the substance in question to an equal mass of equivalent C2H4, the POCP of which is by definition equal to 1.

Acidification

The acidification indicator is linked to the emission of certain acidifying substances

into the atmosphere, such as nitrogen oxides and sulphur oxides, which cause the pH of lakes, forests and oceans to decrease. The method for characterizing acidification impacts is based on that of the Leiden Environmental Sciences Centre, NL (CML), which uses kg of equivalent SO₂ (AP, Acidification Potential) as an impact indicator. AP is based on a relative scale which compares the substance in question to an equal mass of equivalent SO₂, whose AP is by definition equal to 1.

Eutrophication

Indicates a condition an over-abundance of nitrates and phosphates in an aquatic environment, which causes the proliferation of microscopic algae and, in turn, increased bacterial activity; the consequent lowering of oxygen in surface waters and in the soil causes a degradation of the environment which has become asphyxiated and, in the long term, results in the death of fish. The method for characterizing the impacts of eutrophication is based on that of the Leiden Environmental Sciences Centre, NL (CML), which uses kg of PO₄ as an impact indicator (NP, Nutrification Potential). NP is based on a relative scale, which compares the substance in question to an equal mass of PO₄, whose NP is by definition equal to 1.

Land use

This category concerns the effects following the conversion or occupation of land. The impact is expressed in m² per year.

ENVIRONMENTAL PERFORMANCE

Monini Classico Extra Virgin Olive Oil

EVALUATION METHOD

The method of calculation adopted for the study of LCA at the base of this EPD® is described in the PCR 2010:07, CPC Division 21537: Virgin olive oil and its fractions; version 2.1

The characterization factors, used to convert the data from the inventory analysis of the life cycle impact categories, are listed on the website of the International EPD® System.

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 1-litre glass bottle

		UPSTREAM		CORE		DOWNSTREAM		
PARAMETERS Environmental impacts	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
GWP. fossil	kg CO2 eq	3.1310	0.2807	0.0539	0.1180	0.1024	0.0049	3.6910
GWP. biogenic	kg CO2 eq	0.0010	0.0006	0.0005	0.00004	0.00000	0.0007	0.0028
GWP. Land use and land transformation	kg CO2 eq	0.0009	0.0204	0.000049	0.000001	0.000001	0.0000001	0.0213
TOTAL Global Warming Potential	kg CO2 eq	3.1329	0.3017	0.0545	0.1180	0.1024	0.0056	3.7151
Acidification potential	kg SO ₂ eq	0.0391	0.0010	0.0004	0.0007	0.0005	0.0000	0.0416
Eutrophication potential	kg PO ₄ eq	0.0325	0.0003	0.0002	0.0001	0.0001	0.0000	0.0332
Formation potential of tropospheric ozone	kg NMVOC eq	0.0225	0.0007	0.0004	0.0007	0.0006	0.0000	0.0249
Abiotic depletion potential - Elements	g Sb eq	0.0001876	0.0000017	0.000000003	0.00000004	0.00000000	0.0000000002	0.00019
Abiotic depletion potential - Fossil fuels	MJ	29.0738	5.3352	0.6884	1.6791	1.4650	0.0626	38.30
Water scarcity potential	m³ eq.	32.5606	0.1208	0.1103	0.0369	0.000	0.000	32.83

Environmental impact in reference to the functional unit of the 1-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 1-litre glass bottle

			UPSTREAM		CORE	CORE DOWNSTREAM		
PARAMETERS Use of resources	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Primary energy resources –Renewable Used as energy carriers	MJ	0.90920	0.60926	0.08340	0.19705	0.00216	0.00028	1.80
Primary energy resources –Renewable Used as raw materials	MJ	0.10231	0.15873	0.01538	0.00092	0.00045	0.00010	0.2779
Primary energy resources –Renewable TOTAL	MJ	1.0115	0.7680	0.0988	0.1980	0.0026	0.0004	2.0792
Primary energy resources –Non-renewable Used as energy carriers	MJ	32.18	6.27	0.95	1.80	1.56	0.07	42.83
Primary energy resources –Non-renewable Used as raw materials	MJ	0.00020	0.0292	0.000002	0.0000002	0.0000002	0.0000000	0.0294
Primary energy resources –Non-renewable TOTAL	MJ	32.18	6.30	0.95	1.80	1.56	0.07	42.86
Secondary material	Kg	0	0.2003	0.0000	0.0000	0.0000	0.0000	0.2003
Renewable secondary fuels	MJ	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	0	0	0	0	0	0	0
Net use of fresh water	m³	0.93433	0.00120	0.00095	0.000	0.000	0.000	0.94

Environmental impact in reference to the functional unit of the 1-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 1-litre glass bottle

		e grade s	UPSTREAM		CORE	DOWNST	DOWNSTREAM	
PARAMETERS Waste and output flows, other indicators	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Non-hazardous waste disposed	Kg	0	0	0	0	0	0	0
Hazardous waste disposed	Kg	0	0	0	0	0	0	0
Radioactive waste disposed	Kg	0.000189	0.000010	0.000003	0.000011	0.000011	0.000000	0.000226
Components for reuse	Kg	0	0	0	0	0	0	0
Materials for recycling	Kg	0	0	0	0	0	0.3517	0.3517
Materials for energy recovery	Kg	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0
Land use	m²a	109.80	0.0497	0.0059	0.0010	0.0001	0.0001	109.86
By-products	Kg	0	0	6.68	0	0	0	6.68

Environmental impact in reference to the functional unit of the 1-litre bottle of Extra Virgin Classic Olive Oil and its packaging

NOTE: Hazardous and non-hazardous wastes are only reported if treatment takes place outside the system boundaries. The amount of radioactive waste comes from the use of nuclear energy in the national electricity generation mix of different countries along the life cycle.

ENVIRONMENTAL PERFORMANCE 100% ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 1-litre glass bottle

		UPSTREAM			CORE		DOWNSTREAM	
PARAMETERS Environmental impacts		Olive cultivation	Packaging & other materials	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
CVVID 6 11	Unit		production					
GWP. fossil	kg CO ₂ eq	1.5859	0.2720	0.0790	0.0653	0.1024	0.0049	2.1096
GWP. biogenic	kg CO2 eq	0.0003	0.0005	0.0007	0.00003	0.00000	0.0007	0.0022
GWP. Land use and land transformation	kg CO ₂ eq	0.0001	0.0043	0.000003	0.000001	0.000001	0.0000001	0.0044
TOTAL Global Warming Potential	$kg CO_2 eq$	1.5863	0.2769	0.0798	0.0653	0.1024	0.0056	2.1162
Acidification potential	kg SO ₂ eq	0.0239	0.0009	0.0005	0.0002	0.0005	0.0000	0.0260
Eutrophication potential	kg PO ₄ eq	0.0649	0.0002	0.0002	0.0000	0.0001	0.0000	0.0654
Formation potential of tropospheric ozone	kg NMVOC eq	0.0058	0.0006	0.0006	0.0003	0.0006	0.0000	0.0079
Abiotic depletion potential - Elements	g Sb eq	0.0000015	0.0000016	0.000000001	0.000000002	0.00000000	0.0000000002	0.000003
Abiotic depletion potential - Fossil fuels	MJ	8.5449	5.2472	1.0103	0.9335	1.4650	0.0626	17.2635
Water scarcity potential	m³ eq.	1.4477	0.0911	0.0494	0.0370	0.000	0.0000	1.6249

Environmental impact in reference to the functional unit of the 1-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE 100% ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 1-litre glass bottle

			UPSTREAM		CORE	DOWNST	REAM	
PARAMETERS Use of resources	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Primary energy resources –Renewable Used as energy carriers	MJ	1.27744	0.39065	0.06957	0.19596	0.00216	0.00028	1.94
Primary energy resources –Renewable Used as raw materials	MJ	0.02999	0.15709	0.00990	0.00069	0.00045	0.00010	0.1982
Primary energy resources –Renewable TOTAL	MJ	1.3074	0.5477	0.0795	0.1967	0.0026	0.0004	2.1343
Primary energy resources –Non-renewable Used as energy carriers	MJ	9.55	6.17	1.31	1.00	1.56	0.07	19.66
Primary energy resources –Non-renewable Used as raw materials	MJ	0.00001	0.0064	0.000001	0.0000002	0.0000002	0.0000000	0.0064
Primary energy resources –Non-renewable TOTAL	MJ	9.55	6.18	1.31	1.00	1.56	0.07	19.66
Secondary material	Kg	0	0.2003	0.0000	0.0000	0.0000	0.0000	0.2003
Renewable secondary fuels	MJ	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	0	0	0	0	0	0	0
Net use of fresh water	m³	0.02646	0.00120	0.00032	0.000	0.000	0.000	0.02794

Environmental impact in reference to the functional unit of the 1-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE 100% ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 1-litre glass bottle

8			UPSTREAM		CORE	CORE DOWNST		
PARAMETERS Waste and output flows, other indicators								LIFE CYCLE
	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	
Non-hazardous waste disposed	Kg	0	0	0	0	0	0	0
Hazardous waste disposed	Kg	0	0	0	0	0	0	0
Radioactive waste disposed	Kg	0.000051	0.000010	0.000003	0.000006	0.000011	0.000000	0.000082
Components for reuse	Kg	0	0	0	0	0	0	0
Materials for recycling	Kg	0	0	0	0	0	0.3517	0.3517
Materials for energy recovery	Kg	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0
Land use	m²a	6.46	0.0379	0.0260	0.0010	0.0001	0.0001	6.52
By-products	Kg	0	0	4.44	0	0	0	4.44

Environmental impact in reference to the functional unit of the 1-litre bottle of Extra Virgin Classic Olive Oil and its packaging

NOTE: Hazardous and non-hazardous wastes are only reported if treatment takes place outside the system boundaries. The amount of radioactive waste comes from the use of nuclear energy in the national electricity generation mix of different countries along the life cycle.

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 0.75-litre glass bottle

		UPSTREAM		CORE		DOWNSTREAM		
PARAMETERS Environmental impacts	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
GWP. fossil	kg CO2 eq	3.1313	0.3376	0.0539	0.1445	0.1974	0.0059	3.8706
GWP. biogenic	kg CO2 eq	0.0010	0.0006	0.0005	0.00004	0.00001	0.0013	0.0035
GWP. Land use and land transformation	kg CO2 eq	0.0009	0.0217	0.000049	0.000001	0.000002	0.0000001	0.0226
TOTAL Global Warming Potential	kg CO ₂ eq	3.1331	0.3599	0.0545	0.1445	0.1974	0.0071	3.8966
Acidification potential	kg SO2 eq	0.0391	0.0012	0.0004	0.0008	0.0017	0.0000	0.0431
Eutrophication potential	kg PO ₄ eq	0.0325	0.0004	0.0002	0.0001	0.0002	0.0000	0.0334
Formation potential of tropospheric ozone	kg NMVOC eq	0.0225	0.0008	0.0004	0.0008	0.0016	0.0000	0.0262
Abiotic depletion potential - Elements	g Sb eq	0.0001876	0.0000021	0.000000003	0.00000006	0.0000001	0.0000000002	0.000190
Abiotic depletion potential - Fossil fuels	MJ	29.0759	6.4445	0.6885	2.0597	2.7854	0.0760	41.1300
Water scarcity potential	m³ eq.	32.5630	0.1392	0.1103	0.0368	0.000	0.000	32.8487

Environmental impact in reference to the functional unit of the 0.75-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 0.75-litre glass bottle

			UPSTREAM		CORE	CORE DOWNSTREAM		
PARAMETERS Use of resources	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Primary energy resources –Renewable Used as energy carriers	MJ	0.90927	0.64643	0.08341	0.19762	0.00404	0.00041	1.84
Primary energy resources –Renewable Used as raw materials	MJ	0.10231	0.15893	0.01538	0.00103	0.00083	0.00014	0.2786
Primary energy resources –Renewable TOTAL	MJ	1.0116	0.8054	0.0988	0.1987	0.0049	0.0005	2.1198
Primary energy resources –Non-renewable Used as energy carriers	MJ	32.19	7.57	0.95	2.20	2.96	0.08	45.96
Primary energy resources –Non-renewable Used as raw materials	MJ	0.00020	0.0311	0.000002	0.000003	0.0000003	0.0000000	0.0313
Primary energy resources –Non-renewable TOTAL	MJ	32.19	7.61	0.95	2.20	2.96	0.08	45.99
Secondary material	Kg	0	0.18135	0	0	0	0	0.1814
Renewable secondary fuels	MJ	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	0	0	0	0	0	0	0
Net use of fresh water	m³	0.93440	0.00146	0.00095	0.000	0.000	0.000	0.93678

Environmental impact in reference to the functional unit of the 0.75-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 0.75-litre glass bottle

			UPSTREAM		CORE	DOWNST	REAM	
PARAMETERS Waste and output flows, other indicators		Olive cultivation	Packaging & other materials	Olive oil extraction	Filtration brightening and	Distribution	End of life	LIFE CYCLE
	Unit	Guitivation	production	CALIGOTION	packaging			
Non-hazardous waste disposed	Kg	0	0	0	0	0	0	0
Hazardous waste disposed	Kg	0	0	0	0	0	0	0
Radioactive waste disposed	Kg	0.000189	0.000013	0.000003	0.000014	0.000020	0.000001	0.000240
Components for reuse	Kg	0	0	0	0	0	0	0
Materials for recycling	Kg	0	0	0	0	0	0.3139	0.3139
Materials for energy recovery	Kg	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0
Land use	m²a	109.81	0.0502	0.0059	0.0011	0.0002	0.0001	109.87
By-products	Kg	0	0	6.68	0	0	0	6.68

Environmental impact in reference to the functional unit of the 0.75-litre bottle of Extra Virgin Classic Olive Oil and its packaging

NOTE: Hazardous and non-hazardous wastes are only reported if treatment takes place outside the system boundaries. The amount of radioactive waste comes from the use of nuclear energy in the national electricity generation mix of different countries along the life cycle.

ENVIRONMENTAL PERFORMANCE 100% ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 0.75-litre glass bottle

		UPSTREAM		CORE		DOWNSTREAM		
PARAMETERS Environmental impacts								LIFE CYCLE
	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	
GWP. fossil	kg CO ₂ eq	1.5860	0.3289	0.0791	0.0918	0.1974	0.0059	2.2890
GWP. biogenic	kg CO2 eq	0.0003	0.0006	0.0007	0.00004	0.00001	0.0013	0.0029
GWP. Land use and land transformation	kg CO2 eq	0.0001	0.0056	0.000003	0.000001	0.000002	0.000001	0.0056
TOTAL Global Warming Potential	kg CO ₂ eq	1.5864	0.3351	0.0798	0.0918	0.1974	0.0071	2.2976
Acidification potential	kg SO2 eq	0.0239	0.0011	0.0005	0.0004	0.0017	0.0000	0.0275
Eutrophication potential	kg PO ₄ eq	0.0649	0.0003	0.0002	0.0001	0.0002	0.0000	0.0656
Formation potential of tropospheric ozone	kg NMVOC eq	0.0058	0.0007	0.0006	0.0004	0.0016	0.0000	0.0092
Abiotic depletion potential - Elements	g Sb eq	0.0000015	0.0000021	0.000000001	0.00000004	0.00000001	0.0000000002	0.000004
Abiotic depletion potential - Fossil fuels	MJ	8.5455	6.3565	1.0103	1.3140	2.7854	0.0760	20.0878
Water scarcity potential	m³ eq.	1.4478	0.1094	0.0494	0.0370	0.000	0.000	1.6430

Environmental impact in reference to the functional unit of the 0.75-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE 100% ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 0.75-litre glass bottle

		UPSTREAM			CORE	DOWNSTREAM		
PARAMETERS Use of resources	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Primary energy resources –Renewable Used as energy carriers	MJ	1.27754	0.42781	0.06958	0.19654	0.00404	0.00041	1.98
Primary energy resources –Renewable Used as raw materials	MJ	0.02999	0.15729	0.00990	0.00081	0.00083	0.00014	0.1990
Primary energy resources –Renewable TOTAL	MJ	1.3075	0.5851	0.0795	0.1973	0.0049	0.0005	2.1749
Primary energy resources –Non-renewable Used as energy carriers	MJ	9.55	7.47	1.31	1.41	2.96	0.08	22.79
Primary energy resources –Non-renewable Used as raw materials	MJ	0.00001	0.0083	0.000001	0.0000002	0.0000003	0.0000000	0.0083
Primary energy resources –Non-renewable TOTAL	MJ	9.55	7.48	1.31	1.41	2.96	0.08	22.79
Secondary material	Kg	0	0.18135	0	0	0	0	0.18135
Renewable secondary fuels	MJ	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	0	0	0	0	0	0	0
Net use of fresh water	m³	0.02646	0.00145	0.00032	0.000	0.000	0.000	0.02820

Environmental impact in reference to the functional unit of the 0.75-litre bottle of Extra Virgin Classic Olive Oil and its packaging

ENVIRONMENTAL PERFORMANCE 100%ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 0.75-litre glass bottle

			UPSTREAM		CORE	DOWNST	REAM	
PARAMETERS Waste and output flows, other indicators	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Non-hazardous waste disposed	Kg	0	0	0	0	0	0	0
Hazardous waste disposed	Kg	0	0	0	0	0	0	0
Radioactive waste disposed	Kg	0.000051	0.000012	0.000003	0.000009	0.000020	0.000001	0.000097
Components for reuse	Kg	0	0	0	0	0	0	0
Materials for recycling	Kg	0	0	0	0	0	0.3139	0.3139
Materials for energy recovery	Kg	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0
Land use	m²a	6.46	0.0385	0.0260	0.0010	0.0002	0.0001	6.52
By-products	Kg	0	0	4.44	0	0	0	4.44

Environmental impact in reference to the functional unit of the 0.75-litre bottle of Extra Virgin Classic Olive Oil and its packaging

NOTE: Hazardous and non-hazardous wastes are only reported if treatment takes place outside the system boundaries. The amount of radioactive waste comes from the use of nuclear energy in the national electricity generation mix of different countries along the life cycle.

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 0.5-litre glass bottle

		UPST	REAM		CORE	DOWNST	rea m	
PARAMETERS Environmental impacts								LIFE CYCLE
	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	
GWP. fossil	kg CO ₂ eq	3.1310	0.4378	0.0539	0.1479	0.3459	0.0069	4.1235
GWP. biogenic	kg CO2 eq	0.0010	0.0010	0.0005	0.00004	0.00002	0.0017	0.0042
GWP. Land use and land transformation	kg CO2 eq	0.0009	0.0242	0.000049	0.000002	0.000003	0.0000001	0.0252
TOTAL Global Warming Potential	kg CO2 eq	3.1329	0.4630	0.0545	0.1479	0.3459	0.0086	4.1528
Acidification potential	kg SO2 eq	0.0391	0.0013	0.0004	0.0008	0.0022	0.0000	0.0438
Eutrophication potential	kg PO ₄ eq	0.0325	0.0005	0.0002	0.0001	0.0003	0.0000	0.0336
Formation potential of tropospheric ozone	kg NMVOC eq	0.0225	0.0009	0.0004	0.0008	0.0023	0.0001	0.0270
Abiotic depletion potential - Elements	g Sb eq	0.0001876	0.0000029	0.000000003	0.00000006	0.0000001	0.0000000003	0.000191
Abiotic depletion potential - Fossil fuels	MJ	29.0738	7.9891	0.6884	2.1087	4.9240	0.0907	44.8747
Water scarcity potential	m³ eq.	32.5606	0.1036	0.1103	0.0368	0.00	0.00	32.8102

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 0.5-litre glass bottle

		UPSTREAM		CORE	DOWNST	REAM	
Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
MJ	0.90920	0.67738	0.08340	0.19768	0.00720	0.00056	1.88
MJ	0.10231	0.19122	0.01538	0.00105	0.00149	0.00018	0.3116
MJ	1.0115	0.8686	0.0988	0.1987	0.0087	0.0007	2.1871
MJ	32.18	9.61	0.95	2.25	5.24	0.10	50.33
MJ	0.00020	0.0349	0.000002	0.0000003	0.0000005	0.0000000	0.0351
MJ	32.18	9.65	0.95	2.25	5.24	0.10	50.37
Kg	0	0.176	0	0	0	0	0.176
MJ	0	0	0	0	0	0	0
MJ	0	0	0	0	0	0	0
m³	0.93433	0.00212	0.00095	0.000	0.000	0.000	0.93737
	Unit MJ MJ MJ MJ Kg MJ MJ MJ	Olive cultivation MJ 0.90920 MJ 0.10231 MJ 1.0115 MJ 32.18 MJ 0.00020 MJ 32.18 Kg 0 MJ 0 MJ 0	Unit Packaging & other materials production MJ 0.90920 0.67738 MJ 0.10231 0.19122 MJ 1.0115 0.8686 MJ 32.18 9.61 MJ 32.18 9.65 Kg 0 0.176 MJ 0 0 MJ 0 0 MJ 0 0	UPSTREAM Unit Packaging & other materials production Olive extraction production MJ 0.90920 0.67738 0.08340 MJ 0.10231 0.19122 0.01538 MJ 1.0115 0.8686 0.0988 MJ 32.18 9.61 0.95 MJ 0.00020 0.0349 0.000002 MJ 32.18 9.65 0.95 Kg 0 0.176 0 MJ 0 0 0 MJ 0 0 0 MJ 0 0 0	Unit Packaging & cultivation Olive other materials production Olive extraction other materials production Olive oil extraction brightening and packaging MJ 0.90920 0.67738 0.08340 0.19768 MJ 0.10231 0.19122 0.01538 0.00105 MJ 1.0115 0.8686 0.0988 0.1987 MJ 32.18 9.61 0.95 2.25 MJ 0.00020 0.0349 0.000002 0.0000003 MJ 32.18 9.65 0.95 2.25 Kg 0 0.176 0 0 MJ 0 0 0 0 MJ 0 0 0 0	Unit Packaging & other materials production Olive other materials production Filtration brightening and packaging Distribution MJ 0.90920 0.67738 0.08340 0.19768 0.00720 MJ 0.10231 0.19122 0.01538 0.00105 0.00149 MJ 1.0115 0.8686 0.0988 0.1987 0.0087 MJ 32.18 9.61 0.95 2.25 5.24 MJ 0.00020 0.0349 0.000002 0.0000003 0.0000005 MJ 32.18 9.65 0.95 2.25 5.24 Kg 0 0.176 0 0 0 MJ 0 0 0 0 0 MJ 0 0 0 0 0	Unit Packaging & Olive oil other materials Packaging P

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 0.5-litre glass bottle

			UPSTREAM		CORE	DOWNST	REAM	
PARAMETERS Waste and output flows, other indicators	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Non-hazardous waste disposed	Kg	0	0	0	0	0	0	0
Hazardous waste disposed	Kg	0	0	0	0	0	0	0
Radioactive waste disposed	Kg	0.000189	0.000020	0.000003	0.000014	0.000036	0.000001	0.000264
Components for reuse	Kg	0	0	0	0	0	0	0
Materials for recycling	Kg	0	0	0	0	0	0.2464	0.2464
Materials for energy recovery	Kg	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0
Land use	m²a	109.80	0.0606	0.0059	0.0011	0.0004	0.0002	109.87
By-products	Kg	0	0	6.68	0	0	0	6.68

Environmental impact in reference to the functional unit of the 0.5-litre bottle of Extra Virgin Classic Olive Oil and its packaging

NOTE: Hazardous and non-hazardous wastes are only reported if treatment takes place outside the system boundaries. The amount of radioactive waste comes from the use of nuclear energy in the national electricity generation mix of different countries along the life cycle.

ENVIRONMENTAL PERFORMANCE

Monini Extra Virgin Classic Oil 100% ITA 0.5-litre glass bottle

		UPST	REAM		CORE	DOWNST	REAM	
PARAMETERS Environmental impacts	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
GWP, fossil	kg CO ₂ eq	1.5859	0.4291	0.0790	0.0952	0.3459	0.0069	2.5420
GWP, biogenic	kg CO2 eq	0.0003	0.0009	0.0007	0.00004	0.00002	0.0017	0.0037
GWP, Land use and land transformation	kg CO2 eq	0.0001	0.0081	0.000003	0.000001	0.000003	0.0000001	0.0082
TOTAL Global Warming Potential	kg CO ₂ eq	1.5863	0.4381	0.0798	0.0953	0.3459	0.0086	2.5539
Acidification potential	kg SO ₂ eq	0.0239	0.0012	0.0005	0.0004	0.0022	0.0000	0.0281
Eutrophication potential	kg PO ₄ eq	0.0649	0.0005	0.0002	0.0001	0.0003	0.0000	0.0659
Formation potential of tropospheric ozone	kg NMVOC eq	0.0058	0.0009	0.0006	0.0004	0.0023	0.0001	0.0100
Abiotic depletion potential - Elements	g Sb eq	0.0000015	0.0000028	0.000000001	0.00000004	0.0000001	0.0000000003	0.000004
Abiotic depletion potential - Fossil fuels	MJ	8.5449	7.9011	1.0103	1.3631	4.9240	0.0907	23.8341
Water scarcity potential	m³ eq.	1.4477	0.0738	0.0494	0.0369	0.00	0.00	1.6068

ENVIRONMENTAL PERFORMANCE 100% ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 0.5-litre glass bottle

			UPSTREAM		CORE	DOWNST	ГКЕАМ	
PARAMETERS Use of resources	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	LIFE CYCLE
Primary energy resources –Renewable Used as energy carriers	MJ	1.27744	0.45877	0.06957	0.19660	0.00720	0.00056	2.01
Primary energy resources –Renewable Used as raw materials	MJ	0.02999	0.18958	0.00990	0.00082	0.00149	0.00018	0.2320
Primary energy resources –Renewable TOTAL	MJ	1.3074	0.6484	0.0795	0.1974	0.0087	0.0007	2.2421
Primary energy resources –Non-renewable Used as energy carriers	MJ	9.55	9.51	1.31	1.46	5.24	0.10	25.66
Primary energy resources –Non-renewable Used as raw materials	MJ	0.00001	0.0121	0.000001	0.0000002	0.0000005	0.0000000	0.0121
Primary energy resources –Non-renewable TOTAL	MJ	9.55	9.52	1.31	1.46	5.24	0.10	25.67
Secondary material	Kg	0	0.176	0	0	0	0	0.176
Renewable secondary fuels	MJ	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ	0	0	0	0	0	0	0
Net use of fresh water	m³	0.02646	0.00212	0.00032	0.000	0.000	0.000	0.02886

ENVIRONMENTAL PERFORMANCE 100%ITALIANO

Monini Extra Virgin Classic Oil 100% ITA 0.5-litre glass bottle

		UPS	TREAM		CORE	DOWNST	REAM	
PARAMETERS Waste and output flows, other indicators			Parkering 8					LIFE CYCLE
	Unit	Olive cultivation	Packaging & other materials production	Olive oil extraction	Filtration brightening and packaging	Distribution	End of life	
Non-hazardous waste disposed	Kg	0	0	0	0	0	0	0
Hazardous waste disposed	Kg	0	0	0	0	0	0	0
Radioactive waste disposed	Kg	0.000051	0.000020	0.000003	0.000009	0.000036	0.000001	0.000120
Components for reuse	Kg	0	0	0	0	0	0	0
Materials for recycling	Kg	0	0	0	0	0	0.2464	0.2464
Materials for energy recovery	Kg	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0
Land use	m²a	6.46	0.0489	0.0260	0.0010	0.0004	0.0002	6.53
By-products	Kg	0	0	4.44	0	0	0	4.44

Environmental impact in reference to the functional unit of the 0.5-litre bottle of Extra Virgin Classic Olive Oil and its packaging

NOTE: Hazardous and non-hazardous wastes are only reported if treatment takes place outside the system boundaries. The amount of radioactive waste comes from the use of nuclear energy in the national electricity generation mix of different countries along the life cycle.

CHANGES COMPARED TO THE PREVIOUS VERSION

Some improvements have been made to the LCA study of olive oil, which have led to the updating of the values of the various impact indicators analysed; for example, the extraction and emission of water has been regionalized on the basis of the countries where olive growing and oil extraction take place.

First of all, is the modification of the Ecoinvent database, updated from version 3.6 used previously to version 3.7.1; furthermore, the specific calculation of emissions from the application of fertilizers and phytosanitary products takes into account the characteristic fluctuations of cultivation operations.

Compared to the previous year, most of the comparable impact indicators show a decrease, except Acidification and Eutrophication; in addition, products packaged with 100% Italian blend have been added to the previous declaration.

Monini S.p.A. CERTIFICATIONS

Site	Typology	Typology					
Production unit	ORTHODOX UNION	Kosher Certification	U	1992			
Production unit	DOP	Production and packaging DOP Umbria	3A-PTA	1998			
Production unit	ISO 9001:2015	Standard for the management of Quality Systems		1999			
Production unit	ВІО	production and packaging of organic products	Cettification of the control of the	2001			
Production unit	British Retail Consortium	hygienic and sanitary safety of private label food products	T. 12.2	2004			
Production unit	International Food Standard	hygienic and sanitary safety of private label food products		2006			
Production unit	ISO 22000:2018	Food Safety Management Systems		2010			
Production unit	EPD: Monini Extra Virgin Oil "Granfruttato"; "Classico" "Delicato"	Environmental Product	EPD	2012			
Monini "Bios" chain	Organic Products Certificate of Conformity IBD-Brazil	Production of raw materials and packaging of organic products	IBD CERTIFICATIONS	2012			

Monini S.p.A. CERTIFICATIONS

Site	Typology		Certifying body	Year of issue
Production unit	HALAL	Standard: HIA-01, HAS 23201 AND MS 1500 HALAL GUIDELINES & STANDARDS	HALAL UND- WWW.HALANT.ORG	2013
Monini products	EPD: Monini Extra Virgin Oil "BIOS" "DOP Umbria"	Environmental Declaration of Product (EPD®)	EPD	2014
Production unit	JAS Organic Products Certificate of Conformity - Japan	Organic manufacturing and packaging	JAS ICEA	2016
Monini Chain	Certificate of Conformity of organic products OFDC-China	Organic manufacturing and packaging		2016
Production unit	HALAL	Standard: GSO 2055-1 – MUIS-HC-S001 Thailand	THAN JUL- WOMMAN ANTO COG	2018
Production unit	ISO 45001:2018	Occupational health and safety management systems		2018
Production unit	ISO 22005:2008	Traceability system in agri-food chains		2020
Production unit	Extra virgin Consortium Of Quality "CEQ"	Traceability system in agri-food chains Technical Product Specification "Extra Virgin Olive Oil Quality CEQ".	CEQ CONSORZIO EXTRAVERGINE DI GUALITÀ	2020
Production unit	BRCGS Global Standard Food Safety Issue 8	Module 13 - FSMA Preventive Controls Preparedness		2021

ENVIRONMENTAL INFORMATION ADDITIONAL

The packaging used by Monini for its Extra Virgin Olive Oil CLASSICO is recyclable. Moreover, the 1 litre and 0.75-liter bottles contain an average of 45% of recycled glass, whereas the 0.50-liter bottle contains an average of 55%.

INFORMATION

Contacts

Monini S.p.A.

Vania Massari

e-mail: vania.massari@monini.com

Ambiente Italia Srl

Simona Canzanelli

e-mail: simona.canzanelli@ambienteitalia.it

Contract management for EPD® validation:

Bureau Veritas Italia S.p.A.

For further information

Monini S.p.A.

www.monini.com

International EPD® system

www.environdec.com

VERIFICATION

Product Category Rules (PCR): PCR 2010:07, CPC Division 21537: Virgin olive oil and its fractions; version 3.0
PCR review conducted by: The Technical Committee of the International EPD® System Chair: Adriana del Borghi, info@environdec.com
Chair. Adhana dei Borgin, inio e environdec.com
Independent third-party verification of declaration and data, in accordance with ISO 14025:2006
□EPD® process certification ☑EPD® verification
Third-party verifier: Ugo Pretato - Individual Verifier
Approved by: The Technical Committee of the International EPD® System
The procedure of data follow-up during the validity of the EPD includes the third-party verifier:
☑ Yes □No

EPDs within the same product category but from different programmes may not be comparable, nor are EPDs within the same product category and programme but differing in packaging format.

The holder of the EPD® has exclusive ownership, obligations and responsibilities regarding the EPD® itself.

REFERENCES

- 1. ISO 14040:2006 Environmental management Life cycle assessment Principles and framework
- 2. ISO 14044:2018 Environmental management Life cycle assessment Requirements and guidance
- 3. General Programme Instructions for Environmental Product Declarations, version 3.01 of 2013-09-19
- 4. Gustavsson et al., The methodology of the FAO study: "Global Food Losses and Food Waste extent, causes and prevention"-FAO, 2011 From SIK The Swedish Institute for Food and Biotechnology, 2013
- 5. PCR 2010:07, CPC Division 21537: Virgin olive oil and its fractions; version 3.0
- 6. Life cycle assessment of Monini Extra Virgin Olive Oil LCA report; Ambiente Italia S.r.l. updated in February 2022
- 7. ISPRA waste report 2020 2019 data
- 8. CONAI, General programme for the prevention and management of packaging and packaging waste Final general report 2017
- 9. Association of Issuing Bodies, European residual mixes 2020

More information: website: International Olive Oil Council.

Eurostat (2018 data on packaging end-of-life)

www.environdec.com