

IN ACCORDANCE WITH ISO 14025 AND EN 15804:2012+A2:2019 FOR

VOLCAN VOLCANITA VOLCANITA RF XX VO VOLCAN VOLCANITA /

Gypsum Board Products By VOLCÁN

THE INTERNATIONAL EPD® SYSTEM

VOLCANITA

Programme:

The International EPD® System EPD registered through the fully aligned regional programme: Hub EPD® Latin America

Programme operator: EPD International AB, Regional Hub: EPD Latin America

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

EPD registration number: S-P-05624

Publication date: 2022-03-31

Valid until: 2027-03-30

General information

Programme information

Programme:	The International EPD [®] System <u>www.environdec.com</u> EPD registered through the fully aligned regional programme:Hub EPD [®] Latin America www.epd-americalatina.com
Programme Operator	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden EPD Latin America Chile office: Alonso de Ercilla 2996, Ñuñoa, Santiago. Mexico office: Av. Convento de Actopan 24 Int. 7ª, Colonia Jardines de Santa Mónica. Tlalnepantla de Baz, Estado de México, México. C.P. 54050.

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product category rules (PCR): PCR 2019:14 Construction Products and Construction Services VERSION 1.1, 2019-12-20, UN CPC 3753

 $\label{eq:pcrime} \mathsf{PCR} \text{ review was conducted by: } \textit{Technical Committee of the International EPD} \texttt{B} \text{ System}$

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

 \Box EPD process certification \boxtimes EPD verification

Third party verifier: *Ruben Carnerero Email: r.carnerero@ik-ingenieria.com Approved by: The International EPD*[®] System

Procedure for follow-up of data during EPD validity involves third party verifier:

 \boxtimes Yes \Box No

Developed by: EDGE Chile Email: contacto@edgechile.com Web: www.edgeenvironment.com

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

EDGE

What is an EPD?

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life-cycle environmental impact of products.

The following EPD has been developed by Volcán for its gypsum board products.

Company information

Owner of the EPD

Volcán S.A. <u>Web: https://www.volcan.cl</u> <u>Phone:</u> (56) 600 399 2000 <u>Contact:</u> Ricardo Fernández – Manager of Technical and Sustainable Development Area Email - <u>rfernandez@volcan.cl</u> <u>Address</u>: Agustinas 1357 Piso 10 - Santiago, Chile

Description of the organisation

Volcán is a Company leader in constructive solutions that generate habitability, comfort, efficiency and sustainability. Its purpose is to create a better living standard for people in each habituated space, for this and future generations.

Volcán's portfolio of constructive solutions is formed by:

- **1** Solutions for facades and internal division, such as Volcanita for different uses, Volcoglass, fibercement Volcanboard Siding and Volcanboard Deck, and celing access panels;
- 2 Solutions for roofing and climatization, such as asphalt shingles, membranes, felt and ducts;
- **3** Solutions for thermic isolation, acoustic absorption and energy efficiency, such as glass wool Aislanglass, mineral wool Aislan, Sonoglass and Rigitone;
- **4** Solutions for perfect finishes like gypsum plaster, fillers, composites, tape, Levelline corners, Volcastic, Volcabond, and;
- **5** Tools and solutions for passive protection to fire, such as compartments, seals and protection of metallic structures.

Additionally, Volcán offers technical advisory to answer the diverse needs of clients.

Sustainability

Responsible environmental management, protection of the environment and natural resources are a strategic priority for Volcán. This is why in 2014 the company created a Sustainability division, in charge of registering, controlling and learning about all the events that imply environmental impacts, as well as creating and consolidating a cross wise program called "Sustainable Volcán", formed by pillars structured according to all fields of environmental management, with the goal of configurating a sustainable management of waste, emissions, energy use, water use, noise levels, rainfall control, among others; in order to achieve a responsible environmental management.

At the moment, Volcán has the following ISO Standards:

- 6 ISO 9001:2015 Quality management systems Requirements (<u>https://www.volcan.cl/system/files/iso_9001.pdf</u>)
- 7 ISO 14001:2015 Environmental management systems (https://www.volcan.cl/system/files/iso_14001.pdf)
- 8 OHSAS 18001:2007 Occupational Health and Safety Management Systems (<u>https://www.volcan.cl/system/files/ohsas_18001.pdf</u>)
- **9** ISO 50001:2018 Energy management systems (https://www.volcan.cl/system/files/certificaciones_iso_50001.pdf)

Additionally, since 2016, Volcán has been developing its Sustainability Report, where sustainability strategic priorities are being addressed within the organization, including analysis of best practices, and research and focus group with internal and external stakeholders. This report is elaborated following Global Reporting Initiative (GRI) guidelines. The report represents a new era for Volcán, where it is not only about responding to the needs of clients, but also a concern about the surroundings and communities. The latest version of the Sustainability Report and be downloaded from the following link:

https://www.volcan.cl/informe-de-sostenibilidad

Name and location of production site(s):

Volcán S.A. Planta CIVSA- Avenida Concha y Toro 0602, Puente Alto, Región Metropolitana

Product information

Product name

The products included in this EPD are Volcán's gypsum board products.

Product identification and description

UN CPC code: 3753

Volcán's gypsum board is mostly used as internal cladding, for ceilings, wall partitions or walls, with products designed for high traffic, water resistance and fire resistance.

 $\mathbf{F}\mathbf{P}$

Table 1 shows the different products covered in this study, with a short description and applications. The main difference between products is that some are designed for standard conditions, while other are fire or water resistant.

Product	Short description and application	Wide (m)	Length (m)	Thickness (mm)	Weight (kg/m²)
Volcanita ST	Gypsum board for ceilings, wall partitions, cladding of walls, among others. Mix of construction gypsum and additives, with paper in both faces to add resistance (Illustration 1)	1.2	2.40 / 3.00	15	12.0
Volcanita RH	Gypsum board specially designed for cladding of ceramics, vinyl or other material used for wet areas. Mix of construction gypsum and additives, with paper in both faces to add resistance. (Illustration 2)	1.2	2.40 / 3.00	15	12.0
Volcanita RF	Gypsum board specially designed for fire resistance uses. Mix of construction gypsum, additives, and glass fiber, with paper in both faces to add resistance. (Illustration 3)	1.2	2.40 / 3.00	15	10.5

Table 1- Characteristics of gypsum board products covered in the study

Illustration 1- Volcanita ST

Illustration 2- Volcanita RH

Illustration 3- Volcanita RF

Content information

Table 2 presents the composition of Volcán's gypsum board products, as well as packaging materials. No dangerous substances from the candidate list of SVHC are included in the product.

Table 2- Product components

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Construction gypsum	10.2- 14.0	0%	0%
Paper	0.4	0%	100%
Additives	0.3- 0.7	0%	0%
TOTAL	11.3- 14.2	0%	3-4%
Packaging materials	Weight, kg	Weight-% (versus the proc	duct)
Polyethylene	0.006	0.04-0.05%	
Paper	0.0431	0.30-0.38%	
TOTAL	0.0491	0.35-0.43%	

Dangerous substances from the candidate list of SVHC for Authorisation	EC No.	CAS No.	Weight-% per functional or declared unit
Not applicable			

LCA information

A life cycle assessment is a technique for assessing the environmental aspects and potential impacts associated with a product. By considering potential impacts throughout the life cycle of a product (upstream and downstream), the analysis avoids the shifting of burdens from one type of environmental impact to another, from one political region to another and from one stage to the other.

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life cycle environmental impacts of products. The following information describes the scope and methodology of this EPD for Volcán's gypsum board products.

Declared unit

This EPD has a cradle to gate with options approach, with a declared unit of 1 m^2 of gypsum board installed in Chile.

Reference service life

The typical Volcán gypsum board product life is assumed to be the life of the building or 50+ years (Gypsum Association, 2021).

Geographical scope

The geographical scope of this EPD is Chile.

Time representativeness

The information collected for the analysis is 2020, considering the production of all products in this year.

Database(s) and LCA software used

The inventory data for the process are entered in SimaPro LCA program and linked to the pre-existing data for the upstream feedstocks and services. Data were selected per geographic relevance from ecoinvent 3.6 database (Ecoinvent Centre, 2019).

Description of system boundaries

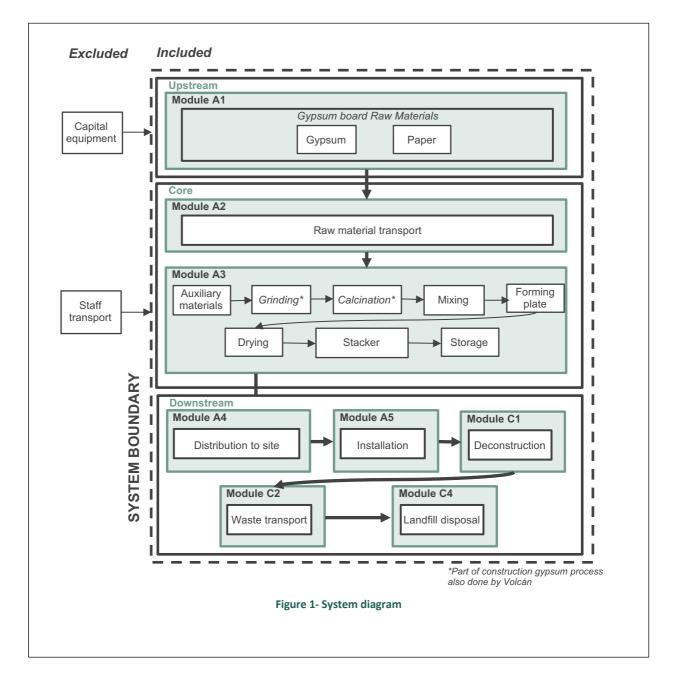
This EPD is cradle to gate grave, however, given that some of the modules are not applicable for Volcán's gypsum board products, the scope is cradle to gate with options¹. Table 3 has the detail of the modules included. The following life cycle stages have not been declared, as they are deemed not applicable for Volcán: Material emissions from usage (B1); Repair (B3); Replacement (B4); Refurbishment (B5), Operational energy use (B6) and Operational water use (B7).

In the case of Waste processing (C3) and Reuse, recycle or recovery (D) these have been included in the analysis; however, they are both considered to be 0 due to a conservative scenario of all products going to landfill. This scenario responds to Volcán not having a reuse, recovery, recycling take back program for its products. Also on a national level, official data from the government in terms of circular economy in the construction and demolition sector indicates that the industry is very behind in this area. On one hand, the baseline is not very clear, since only 50% of companies declare their waste, only 8.4% of that is valorised, and within that the only materials with relevant data are steel, wood, other metals,

¹ Cradle to gate with options, modules C1–C4, module D and with optional modules (A1–A3 + C + D and additional modules). The additional modules may be one or more selected from A4–A5 and/or B1–B7.

and stone and gravel (Gobierno de Chile, 2020). Thankfully, this scenario could change in the future due to the Roadmap on Circular Economy for the Construction and Demolition Sector, where targets are a 30% valorisation of waste for 2025 and 70% for 2035.

Table 3- Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation


	Pro	duct st	age	proc	ruction cess age			Us	se sta	ge	Γ		Er	nd of li	ife sta	ge	Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	A3	A4	A5	B1	B2	В3	В4	В5	B6	B7	C1	C2	C3	C4	D
Modules declared	х	x	x	x	x	NR	NR	NR	NR	NR	NR	NR	x	x	NR	x	NR
Geography	mostl Chile, t	out also Austria		Chile		Chile								NA			
Specific data used			93%											-			
Variation – products	+-8% v	ariation t	oetween average	products	and the	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites	Not ap	Not applicable, only one production site			ion site	-	-	-	-	-	-	-	-	-	-	-	-

System diagram

Figure 1 presents the system diagram. The process starts previously with construction gypsum process (also done by Volcán), specifically grinding (primary, secondary and tertiary grinding to reduce the size of mineral gypsum) and calcination (dehydration of mineral gypsum in an oven working with electricity and natural gas, to obtain crystals with lower porosity and regular shape). The gypsum board process itself starts with the mixing of gypsum with water and additives, creating plaster. Afterwards, the plaster is spread evenly over paper giving it shape and thickness, and then

moved through 200m bands to forge. During this movement blades make the necessary cuts to provide the right dimension of the board. Drying is the final process, followed by stacking (with labelling) and storage.

Foreground data sources and quality

Foreground data on raw material requirements, manufacture and distribution was provided by Volcán for the year 2020. Background data was retrieved from ecoinvent 3.6, which dates from 2019, for processes occurring in Chile and countries supplying raw materials. In compliance with the relevant PCR, generic processes were used for feedstock materials.

Data quality is considered medium to good. More details in Table 4 below.

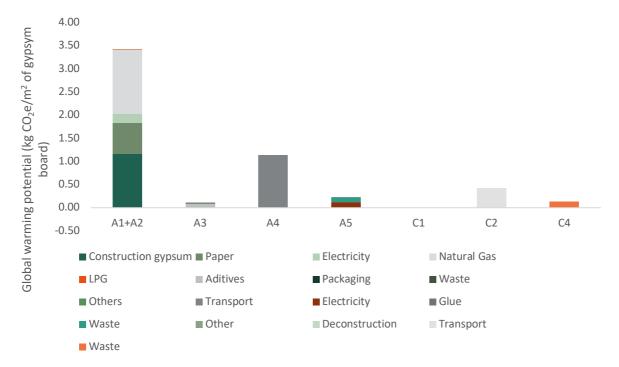
Table 4- Foreground data sources and quality

	Product data	Module A1	Module A2	Module A3	Module A4	Module A5	Module B	Module C
Data	Range and physical properties	Raw material inputs Energy inputs	Transportation from national and overseas suppliers to Volcán's installations	Water inputs Consumable inputs Waste outputs Internal transport distances Emissions	Distribution information	Ancillary materials and energy for installation	Ancillary materials and energy for deinstallation	End of life of products
Source	Collected by Volcán staff for 2020	Collected by Volcán staff for 2020	Supplier locations provided by Volcán staff for 2020. Distances calculated with online tool. Transport specifications assumed from ecoinvent 3.6 processes.	Collected by Volcán staff for 2020	Collected by Volcán staff for 2020	Estimation s based on products description and use made by Volcán staff	Estimations based on products description and use made by Volcán staff	Conservative assumptions given no take back scheme and low recyclability in Chile
Quality	Good.	Good.	Good.	Good.	Good	Medium	Medium	Medium

Exclusion of small amounts and cut off criteria

Environmental impacts relating to personnel, infrastructure, and production equipment not directly consumed in the process are excluded from the system. All other reported data were incorporated and modelled using the best available life cycle inventory data.

No other cut offs were necessary for the modules included in this EPD.

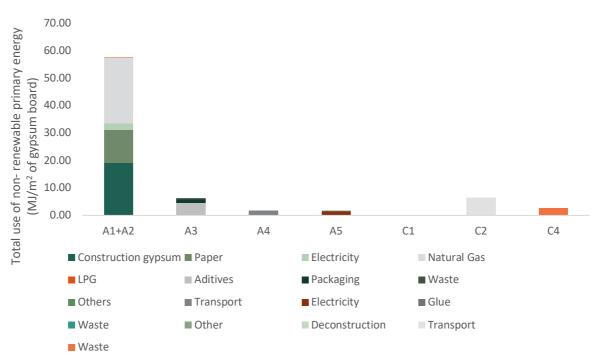

Allocation

For Volcán's gypsum board production there are no co-products from production and therefore allocation issues were avoided.

Environmental Information

Potential environmental impacts

- Module A1+A2 (raw materials and energy) has the highest impact contribution to most environmental impacts (13 out of 14 indicators, with an average 55% contribution among them). The highest contribution is to global warming potential - land use and land use change (84%), because of the paper in the product. In terms of total global warming potential, main impact contribution comes from natural gas used in the manufacturing process (26% contribution of the overall impact (Figure 2) of the product and 39% of the module). Construction gypsum and paper also show relevant impact in this category, contributing to 19% and 14% of total product impact, respectively.
- Modules A3 (manufacturing and packaging) and A4 (transport to site) have similar average impact contribution (16% and 13%, respectively) across the different impacts, although their main contribution is different depending on the specific indicator. In the case of A3, the main contribution is to global warming potential (biogenic) (48%, mostly due to maize starch and paper), abiotic depletion potential (minerals and metals) (32%, because of potassium sulphate) and water depletion potential (26%, mainly due to the water used in the process). Module A4's main contribution is to ozone depletion potential (30%) because of the use of fuels.
- Module C4 has a low impact contribution to most impacts, with the exception of acidification potential (60% contribution) because of gypsum board going to landfill generating emissions to air and water in the process.
- Modules A5 (installation), C1 (deconstruction) and C2 (transport disposal) present a low impact contribution to most impacts.



Resource use

Resource use

- Module A1+A2 (raw materials and energy) has the highest contribution to total use of non-renewable energy, with 61% of the total, mostly because of natural gas (31% of total product contribution), construction gypsum (25% contribution) and paper (16% contribution), as can be seen in Figure 3. This module also presents an important impact in terms of use of net fresh water (57%), because of the relevance of reservoir hydro energy in the Chilean electricity grid². Additionally, this module has the most contribution to the use of secondary materials, thanks to the use of recycled paper.
- Module A3 (manufacturing and packaging) also has a relevant impact in terms of net fresh water use (27% contribution) due to the use of water in the manufacturing process. On the other hand, this module is responsible for 25% of total use of renewable energy, mostly because of the use of paper for packaging.
- Module A4 (transport to site) only shows a relevant contribution to total use of non-renewable energy, related to the use of fossil fuels.

 Modules A5 (installation), C1 (deconstruction), C2 (transport to disposal) and C4 (disposal) have a low contribution to most resource use.

Figure 3- Input contribution to total use of non- renewable primary energy, by module for 1 m² of Volcanita ST 15mm

Waste and Output flows

- Module C4 (disposal) has the highest contribution to non- hazardous waste disposed (Figure 4, with 69% contribution), because of conservative assumption that all products go to landfill at the end of life.
- Modules A4 (transport to site) and A1+A2 (raw materials and energy) have a relevant contribution to radioactive waste disposed (42% and 29%, respectively) related to the production of fossil fuels that generates this type of waste.
- In terms of hazardous waste, module A3 (manufacturing and packaging) has the highest contribution, with 47% of total impact, due to the generation of this type of waste in gypsum board manufacturing process.

² 12% according to the latest statistics by the Ministry of Energy of Chile (Ministerio de Energía, 2020)

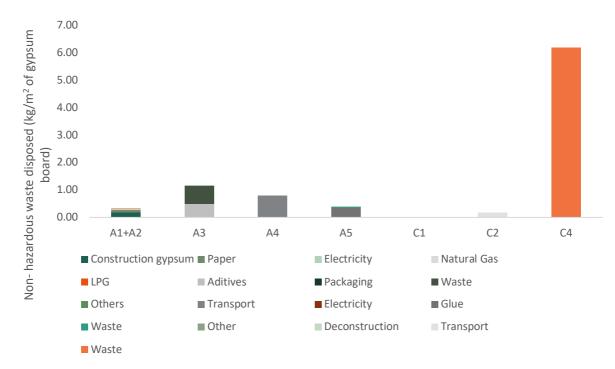


Figure 4- Input contribution to non- hazardous waste disposed, by module for 1 m² of Volcanita ST 15mm

Volcanita ST 15mm

Table 5- Potential environmental impact – mandatory indicators according to EN 15804

Results per 1 m ² of Volcanita ST 15mm																		
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	В4	В5	B6	B7	C1	C2	C3	C4	D
GWP-fossil	kg CO ₂ eq.	3.89E+00	4.38E-01	4.33E+00	1.14E+00	1.25E-01	ND	1.12E-01	4.25E-01	0	1.28E-01	0						
GWP-biogenic	kg CO ₂ eq.	-4.70E-01	-3.41E-01	-8.12E-01	4.37E-04	9.72E-02	ND	1.39E-03	4.47E-04	0	1.35E-03	0						
GWP-luluc	kg CO ₂ eq.	6.41E-03	4.36E-04	6.85E-03	4.08E-04	2.62E-05	ND	1.15E-05	2.68E-04	0	3.89E-05	0						
GWP-total	kg CO ₂ eq.	3.43E+00	9.71E-02	3.52E+00	1.14E+00	2.22E-01	ND	1.13E-01	4.25E-01	0	1.29E-01	0						
ODP	kg CFC 11 eq.	3.97E-07	4.47E-08	4.42E-07	2.47E-07	5.37E-09	ND	2.95E-09	8.36E-08	0	3.50E-08	0						
AP	mol H⁺ eq.	2.44E-02	2.64E-02	5.08E-02	4.73E-03	6.07E-03	ND	8.97E-04	2.39E-03	0	9.76E-02	0						
EP-freshwater	kg PO₄³⁻ eq.	4.56E-03	1.36E-03	5.92E-03	8.66E-04	4.85E-04	ND	3.23E-04	5.11E-04	0	1.91E-04	0						
EP-freshwater	kg P eq.	7.11E-04	1.54E-04	8.65E-04	9.55E-05	8.47E-05	ND	8.11E-05	7.61E-05	0	1.19E-05	0						
EP-marine	kg N eq.	5.70E-03	1.66E-03	7.36E-03	1.39E-03	3.17E-04	ND	2.11E-04	7.11E-04	0	4.19E-04	0						
EP-terrestrial	mol N eq.	6.08E-02	1.71E-02	7.79E-02	1.52E-02	2.55E-03	ND	2.23E-03	7.83E-03	0	4.59E-03	0						
POCP	kg NMVOC eq.	1.53E-02	3.96E-03	1.93E-02	4.63E-03	9.81E-04	ND	5.54E-04	2.53E-03	0	7.27E-03	0						
ADP- minerals&metals*	kg Sb eq.	8.09E-05	5.67E-05	1.38E-04	2.99E-05	4.98E-07	ND	3.54E-07	9.26E-06	0	1.59E-06	0						
ADP-fossil*	MJ	5.27E+01	5.71E+00	5.84E+01	1.68E+01	1.53E+00	ND	1.31E+00	6.08E+00	0	2.44E+00	0						
WDP	m ³	9.86E-01	4.35E-01	1.42E+00	5.42E-02	6.67E-02	ND	6.53E-02	2.81E-02	0	8.59E-03	0						
		ssil = Global W tion potential o																

Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Table 6- Potential environmental impact – additional mandatory and voluntary indicators

	Results per 1 m ² of Volcanita ST 15mm																	
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	В4	В5	B6	В7	C1	C2	C3	C4	D
GWP-GHG ³	kg CO ₂ eq.	3.89E+00	4.38E-01	4.33E+00	1.14E+00	1.25E-01	ND	1.12E-01	4.25E-01	0	1.28E-01	0						

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

"ND" (Not Declared)

Table 7- Use of resources

	Results per 1 m ² of Volcanita ST 15mm																	
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	В3	В4	B5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	9.14E+00	5.70E+00	1.48E+01	1.87E-01	4.21E-01	ND	4.09E-01	1.39E-01	0	8.95E-02	0						
PERM	MJ	6.29E+00	0	6.29E+00	0	0	ND	0	0	0	0	0						
PERT																		
PENRE	MJ	5.74E+01	6.12E+00	6.36E+01	1.78E+01	1.63E+00	ND	1.40E+00	6.45E+00	0	2.59E+00	0						
PENRM	MJ.	0	0	0	0	0	ND	0	0	0	0	0						
PENRT	MJ	5.74E+01	6.12E+00	6.36E+01	1.78E+01	1.63E+00	ND	1.40E+00	6.45E+00	0	2.59E+00	0						
SM	kg	3.70E-01	0	3.70E-01	0	0	ND	0	0	0	0	0						
RSF	MJ	0	0	0	0	0	ND	0	0	0	0	0						
NRSF	MJ	0	0	0	0	0	ND	0	0	0	0	0						
FW	m ³	2.26E-02	1.09E-02	3.35E-02	1.64E-03	1.11E-03	ND	9.80E-04	9.54E-04	0	1.62E-03	0						
	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw												Jse of r	enewable prir	mary energy r	esource	es used as rav	v

Acronyms

materials; PERT = Total use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

³ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 8- Waste production

	Results per 1 m ² of Volcanita ST 15mm																	
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	1.92E-04	3.22E-04	5.14E-04	4.42E-05	1.83E-06	ND	1.47E-06	1.16E-04	0	4.64E-06	0						
Non-hazardous waste disposed	kg	2.99E-01	1.14E+00	1.44E+00	7.92E-01	3.83E-01	ND	8.74E-03	1.79E-01	0	6.20E+00	0						
Radioactive waste disposed	kg	7.39E-05	1.83E-05	9.22E-05	1.10E-04	1.61E-06	ND	4.16E-07	3.85E-05	0	1.65E-05	0						

"ND" (Not Declared)

Table 9- Output flows

	Results per 1 m ² of Volcanita ST 15mm																	
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	ND	0	0	0	0	0						
Material for recycling	kg	0	0	0	0	0	ND	0	0	0	0	0						
Materials for energy recovery	kg	0	0	0	0	0	ND	0	0	0	0	0						
Exported energy, electricity	MJ	0	0	0	0	0	ND	0	0	0	0	0						
Exported energy, thermal	MJ	0	0	0	0	0	ND	0	0	0	0	0						

"ND" (Not Declared)

Table 10- Information on biogenic carbon content

Results per 1 m ² of Volcanita ST 15mm												
BIOGENIC CARBON CONTENT Unit QUANTITY												
Biogenic carbon content in product	kg C	-2.66										
Biogenic carbon content in packaging	kg C	-0.33										

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

Volcanita RH 15mm

Table 11- Potential environmental impact – mandatory indicators according to EN 15804

					Result	s per 1 m ²	of Vo	Icanita R	H 15n	nm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP-fossil	kg CO ₂ eq.	3.98E+00	8.88E-01	4.87E+00	1.53E+00	1.25E-01	ND	ND	ND	ND	ND	ND	ND	1.12E-01	4.40E-01	0	1.32E-01	0
GWP-biogenic	kg CO ₂ eq.	-4.76E-01	-3.94E-01	-8.70E-01	5.21E-04	9.72E-02	ND	ND	ND	ND	ND	ND	ND	1.39E-03	4.64E-04	0	1.40E-03	0
GWP-luluc	kg CO ₂ eq.	6.43E-03	7.71E-04	7.20E-03	6.76E-04	2.62E-05	ND	ND	ND	ND	ND	ND	ND	1.15E-05	2.78E-04	0	4.03E-05	0
GWP-total	kg CO ₂ eq.	3.51E+00	4.94E-01	4.01E+00	1.53E+00	2.22E-01	ND	ND	ND	ND	ND	ND	ND	1.13E-01	4.41E-01	0	1.34E-01	0
ODP	kg CFC 11 eq.	4.06E-07	2.27E-07	6.33E-07	3.21E-07	5.43E-09	ND	ND	ND	ND	ND	ND	ND	2.95E-09	8.67E-08	0	3.63E-08	0
AP	mol H⁺ eq.	2.47E-02	3.05E-02	5.53E-02	6.27E-03	6.26E-03	ND	ND	ND	ND	ND	ND	ND	8.97E-04	2.48E-03	0	1.01E-01	0
EP-freshwater	kg PO₄³⁻ eq.	4.63E-03	2.09E-03	6.72E-03	1.19E-03	4.85E-04	ND	ND	ND	ND	ND	ND	ND	3.23E-04	5.30E-04	0	1.98E-04	0
EP-freshwater	kg P eq.	7.24E-04	2.62E-04	9.86E-04	1.46E-04	8.47E-05	ND	ND	ND	ND	ND	ND	ND	8.11E-05	7.89E-05	0	1.24E-05	0
EP-marine	kg N eq.	5.77E-03	2.51E-03	8.29E-03	1.78E-03	3.17E-04	ND	ND	ND	ND	ND	ND	ND	2.11E-04	7.37E-04	0	4.34E-04	0
EP-terrestrial	mol N eq.	6.16E-02	2.63E-02	8.79E-02	1.94E-02	2.56E-03	ND	ND	ND	ND	ND	ND	ND	2.23E-03	8.12E-03	0	4.76E-03	0
POCP	kg NMVOC eq.	1.55E-02	6.16E-03	2.17E-02	5.92E-03	9.95E-04	ND	ND	ND	ND	ND	ND	ND	5.54E-04	2.62E-03	0	7.53E-03	0
ADP- minerals&metals*	kg Sb eq.	8.23E-05	5.32E-05	1.36E-04	5.29E-05	5.01E-07	ND	ND	ND	ND	ND	ND	ND	3.54E-07	9.60E-06	0	1.65E-06	0
ADP-fossil*	MJ	5.40E+01	1.24E+01	6.64E+01	2.22E+01	1.53E+00	ND	ND	ND	ND	ND	ND	ND	1.31E+00	6.30E+00	0	2.53E+00	0
WDP	m ³	9.99E-01	9.66E-01	1.97E+00	7.83E-02	6.67E-02	ND	ND	ND	ND	ND	ND	ND	6.53E-02	2.91E-02	0	8.90E-03	0
		ssil = Global W	0		, 0				U					ng Potential la			0,	

Acronyms Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Table 12- Potential environmental impact – additional mandatory and voluntary indicators

					Resu	ilts per 1 n	n² of \	/olcanita l	RH 15	mm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	В4	В5	B6	В7	C1	C2	C3	C4	D
GWP-GHG ⁴	kg CO ₂ eq.	3.98E+00	8.88E-01	4.87E+00	1.53E+00	1.25E-01	ND	ND	ND	ND	ND	ND	ND	1.12E-01	4.40E-01	0	1.32E-01	0

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

"ND" (Not Declared)

Table 13- Use of resources

					Resu	lts per 1 m	n ² of V	/olcanita F	RH 151	mm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	В3	B4	В5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	9.25E+00	6.93E+00	1.62E+01	2.88E-01	4.21E-01	ND	ND	ND	ND	ND	ND	ND	4.09E-01	1.44E-01	0	9.28E-02	0
PERM	MJ	6.29E+00	0	6.29E+00	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
PERT	MJ	1.55E+01	6.93E+00	2.25E+01	2.88E-01	4.21E-01	ND	ND	ND	ND	ND	ND	ND	4.09E-01	1.44E-01	0	9.28E-02	0
PENRE	MJ	5.89E+01	1.33E+01	7.22E+01	2.36E+01	1.63E+00	ND	ND	ND	ND	ND	ND	ND	1.40E+00	6.69E+00	0	2.68E+00	0
PENRM	MJ.	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
PENRT	MJ	5.89E+01	1.33E+01	7.22E+01	2.36E+01	1.63E+00	ND	ND	ND	ND	ND	ND	ND	1.40E+00	6.69E+00	0	2.68E+00	0
SM	kg	3.70E-01	0	3.70E-01	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
RSF	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
FW	m³	2.29E-02	2.45E-02	4.74E-02	2.38E-03	1.11E-03	ND	ND	ND	ND	ND	ND	ND	9.80E-04	9.89E-04	0	1.68E-03	0
	PER	E = Use of ren	ewable prima	ry energy exc	luding renewa	ble primary e	nergy r	esources use	d as rav	w mater	ials; PE	ERM = l	Jse of r	enewable pri	mary energy r	esource	es used as rav	N

Acronyms

materials; PERT = Total use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

⁴ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 14- Waste production

					Resu	lts per 1 m	² of V	/olcanita F	RH 151	nm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	B4	В5	B6	B7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	1.93E-04	3.38E-04	5.31E-04	5.98E-05	1.84E-06	ND	ND	ND	ND	ND	ND	ND	1.47E-06	1.20E-04	0	4.81E-06	0
Non-hazardous waste disposed	kg	3.04E-01	1.14E+00	1.44E+00	8.64E-01	3.95E-01	ND	ND	ND	ND	ND	ND	ND	8.74E-03	1.85E-01	0	6.42E+00	0
Radioactive waste disposed	kg	7.47E-05	3.30E-05	1.08E-04	1.43E-04	1.64E-06	ND	ND	ND	ND	ND	ND	ND	4.16E-07	3.99E-05	0	1.71E-05	0

"ND" (Not Declared)

Table 15- Output flows

					Resu	lts per 1 n	n ² of V	olcanita R	RH 151	nm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	В3	B4	В5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Material for recycling	kg	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0

"ND" (Not Declared)

Table 16- Information on biogenic carbon content

Results per 1 m	² of Volcanita RH 15mm	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	-2.87
Biogenic carbon content in packaging	kg C	-0.33

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

Volcanita RF 15mm

Table 17- Potential environmental impact - mandatory indicators according to EN 15804

					Result	s per 1 m ²	of Vo	Icanita R	F 15m	ım								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	В3	В4	В5	B6	B7	C1	C2	C3	C4	I
GWP-fossil	kg CO ₂ eq.	4.25E+00	5.21E-01	4.77E+00	1.27E+00	1.26E-01	ND	ND	ND	ND	ND	ND	ND	1.12E-01	4.75E-01	0	1.43E-01	
GWP-biogenic	kg CO ₂ eq.	-4.96E-01	-4.35E-01	-9.31E-01	4.89E-04	9.72E-02	ND	ND	ND	ND	ND	ND	ND	1.39E-03	5.01E-04	0	1.51E-03	
GWP-luluc	kg CO ₂ eq.	6.51E-03	4.64E-04	6.98E-03	4.57E-04	2.64E-05	ND	ND	ND	ND	ND	ND	ND	1.15E-05	3.00E-04	0	4.36E-05	
GWP-total	kg CO ₂ eq.	3.76E+00	8.68E-02	3.84E+00	1.27E+00	2.23E-01	ND	ND	ND	ND	ND	ND	ND	1.13E-01	4.76E-01	0	1.44E-01	
ODP	kg CFC 11 eq.	4.33E-07	6.61E-08	4.99E-07	2.76E-07	5.59E-09	ND	ND	ND	ND	ND	ND	ND	2.95E-09	9.36E-08	0	3.92E-08	
AP	mol H⁺ eq.	2.58E-02	2.98E-02	5.56E-02	5.29E-03	6.68E-03	ND	ND	ND	ND	ND	ND	ND	8.97E-04	2.68E-03	0	1.09E-01	
EP-freshwater	kg PO4 ³⁻ eq.	4.87E-03	1.62E-03	6.50E-03	9.69E-04	4.86E-04	ND	ND	ND	ND	ND	ND	ND	3.23E-04	5.72E-04	0	2.13E-04	
EP-freshwater	kg P eq.	7.66E-04	1.47E-04	9.12E-04	1.07E-04	8.48E-05	ND	ND	ND	ND	ND	ND	ND	8.11E-05	8.52E-05	0	1.34E-05	
EP-marine	kg N eq.	6.02E-03	2.19E-03	8.21E-03	1.55E-03	3.19E-04	ND	ND	ND	ND	ND	ND	ND	2.11E-04	7.96E-04	0	4.69E-04	
EP-terrestrial	mol N eq.	6.42E-02	2.28E-02	8.70E-02	1.70E-02	2.58E-03	ND	ND	ND	ND	ND	ND	ND	2.23E-03	8.77E-03	0	5.14E-03	
POCP	kg NMVOC eq.	1.61E-02	4.89E-03	2.10E-02	5.18E-03	1.03E-03	ND	ND	ND	ND	ND	ND	ND	5.54E-04	2.83E-03	0	8.13E-03	
ADP- ninerals&metals*	kg Sb eq.	8.75E-05	3.44E-05	1.22E-04	3.34E-05	5.08E-07	ND	ND	ND	ND	ND	ND	ND	3.54E-07	1.04E-05	0	1.78E-06	
ADP-fossil*	MJ	5.76E+01	6.86E+00	6.45E+01	1.87E+01	1.54E+00	ND	ND	ND	ND	ND	ND	ND	1.31E+00	6.80E+00	0	2.73E+00	
WDP	m ³	1.04E+00	4.33E-01	1.48E+00	6.07E-02	6.67E-02	ND	ND	ND	ND	ND	ND	ND	6.53E-02	3.14E-02	0	9.61E-03	

Acronyms acr

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Table 18- Potential environmental impact – additional mandatory and voluntary indicators

					Resu	ilts per 1 n	n² of \	Volcanita I	RF 15	mm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	В4	B5	B6	B7	C1	C2	C3	C4	D
GWP-GHG⁵	kg CO ₂ eq.	4.25E+00	5.21E-01	4.77E+00	1.27E+00	1.26E-01	ND	ND	ND	ND	ND	ND	ND	1.12E-01	4.75E-01	0	1.43E-01	0

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

"ND" (Not Declared)

Table 19- Use of resources

					Resu	lts per 1 m	n² of V	/olcanita F	RF 151	nm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	9.66E+00	6.70E+00	1.64E+01	2.09E-01	4.22E-01	ND	ND	ND	ND	ND	ND	ND	4.09E-01	1.56E-01	0	1.00E-01	0
PERM	MJ	6.29E+00	0	6.29E+00	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
PERT	MJ	1.59E+01	6.70E+00	2.26E+01	2.09E-01	4.22E-01	ND	ND	ND	ND	ND	ND	ND	4.09E-01	1.56E-01	0	1.00E-01	0
PENRE	MJ	6.29E+01	7.34E+00	7.02E+01	1.99E+01	1.64E+00	ND	ND	ND	ND	ND	ND	ND	1.40E+00	7.22E+00	0	2.89E+00	0
PENRM	MJ.	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
PENRT	MJ	6.29E+01	7.34E+00	7.02E+01	1.99E+01	1.64E+00	ND	ND	ND	ND	ND	ND	ND	1.40E+00	7.22E+00	0	2.89E+00	0
SM	kg	3.70E-01	0	3.70E-01	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
RSF	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
FW	m ³	2.38E-02	1.08E-02	3.46E-02	1.84E-03	1.12E-03	ND	ND	ND	ND	ND	ND	ND	9.80E-04	1.07E-03	0	1.82E-03	0
	PER	E = Use of ren	ewable prima	ry energy exc	luding renewa	ble primary e	nergy r	esources use	d as rav	w mater	ials; PE	ERM = l	Jse of I	enewable pri	mary energy r	esource	es used as rav	N

Acronyms

materials; PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources used as raw materials; PERT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

⁵ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 20- Waste production

					Resu	lts per 1 m	² of V	/olcanita F	RF 15r	nm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	B4	В5	B 6	B7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	1.97E-04	3.60E-04	5.57E-04	4.94E-05	1.86E-06	ND	ND	ND	ND	ND	ND	ND	1.47E-06	1.29E-04	0	5.20E-06	0
Non-hazardous waste disposed	kg	3.22E-01	1.04E+00	1.36E+00	8.86E-01	4.22E-01	ND	ND	ND	ND	ND	ND	ND	8.74E-03	2.00E-01	0	6.94E+00	0
Radioactive waste disposed	kg	7.74E-05	2.77E-05	1.05E-04	1.23E-04	1.71E-06	ND	ND	ND	ND	ND	ND	ND	4.16E-07	4.31E-05	0	1.85E-05	0

"ND" (Not Declared)

Table 21- Output flows

					Resu	lts per 1 n	n² of V	olcanita F	RF 15r	nm								
Indicator	Unit	A1+A2	A3	Tot.A1- A3	A4	A5	B1	B2	B3	B4	В5	B 6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Material for recycling	kg	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	ND	ND	ND	ND	ND	ND	ND	0	0	0	0	0

"ND" (Not Declared)

Table 22- Information on biogenic carbon content

Results per 1 m	² of Volcanita RF 15mm	
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	-3.10
Biogenic carbon content in packaging	kg C	-0.33

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

References

Ecoinvent Centre, 2019. ecoinvent version 3.6 database, Zurich: ETH, Agroscope, EMPA, EPFL, PSI.

ISO, 2007. Sustainability in building construction - Environmental declaration of building products. ISO 21930:2007, Geneva: ISO.

Sea-Distances.org, 2017. *Sea Distances*. [Online] Available at: <u>https://sea-distances.org/</u>

Google, 2017. Maps. [Online].

EPD International, 2019. *Product Category Rules for Construction Products and Construction Services, PCR2019:14*, Stockholm: EPD International.

European Standards, 2019. Sustainability of construction works - Environmental product declarations, CSN EN 15804:2019, Pilsen: European Standards.

EPD International, 2019. *General Programme Instructions for the International EPD System. Version 3.01*, s.l.: s.n.

Gypsum Association, 2021. *Life Cycle Resources*. [Online] Available at: <u>https://gypsum.org/life-cycle-resources/</u> [Accessed 20 October 2021].

Gobierno de Chile, 2020. Hoja de Ruta RCD Economía Circular en Construcción 2035, Santiago, CHile: s.n.

