Environmental Product Declaration

In accordance with ISO 14025 and EN 15804 for: **SS Piles UAB Scandia Steel Baltic**

Programme:	The International EPD [®] System <u>www.environdec.com</u>				
Programme operator:	EPD International AB				
EPD registration number:	S-P-01159				
Issue date:	2017-12-12				
Valid until:	2022-12-04				
Revision date:	2017-12-04				
Geographical scope:	Europe				

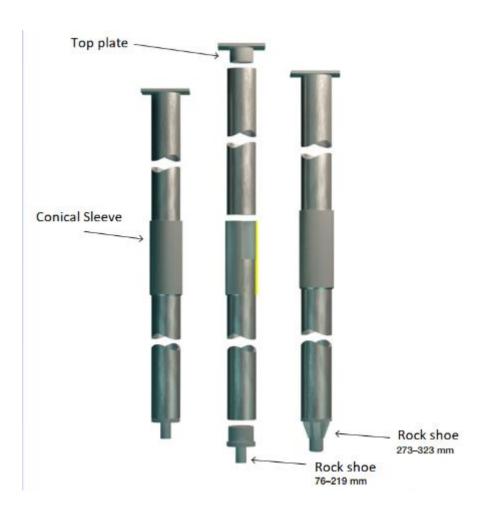
[®]EPD[®]

In accordance with ISO 14025 and EN 15804

Company

Scandia Steel is a leading supplier of steel piling pipes. Our piles are supplied to the Scandinavian building industry and used by well-known construction companies.

UAB Scandia Steel Baltic


Upplandsgatan 7 111 23 Stockholm Sweden Phone: +46 702 95 04 06 Homepage: www.scandiasteel.se

Product

SS Pile is a straight steel tube with a top plate, conical sleeve and rock shoe. A picture of the different components of the SS pile can be seen in the figure below.

The SS Piles consist of 100% steel. The steel grade used for the SS Piles is S460MH.

The SS Piles are either drilled or rammed into place, either with a driving shoe or a ring set. After ramming tubes are normally emptied and reinforced using steel and concrete. Typical applications are foundations for (houses) dwellings, offices and commercial buildings as well as refurbishing existing foundations and for infrastructure.

Product Life Cycle

This study goes from cradle-to-gate. That means that all processes needed for raw material extraction, transport to manufacturing and manufacturing is included in the study.

According to the PCR the life cycle should be divided into two different life cycle stages:

Upstream processes (from cradle-to-gate). Includes life cycle stage referred to as A1 Raw Material Supply. In this case extraction and processing of steel raw material.

Raw material Steel pipe

The raw material for the SS Piles comes from three steelworks in Europe. One of these supplier that 2016 stood for 25% of the raw material supply is called Arvedi Tubi Acciaio S.p.A and the plant Arvedi Steel and are located in Cremona, in northern Italy. Specific data from this steelwork concerning processing technology and recycled content will be representative in the LCA model. The second producer, that stood for 25% of the supply 2016, is Stalprodukt SA and are located in Poland. The third producer, that stood for 50% of the supply 2016, is a Turkish steelwork plant that also uses EAF technique.

The steelworks produce the raw material for the SS Piles using Electric Arc Furnace (EAF). For the EAF a high amount of recycled steel scrap, >65%, can be used as input material. As an average 2014 came 65% of the raw material for the SS Piles produced from recycled steel scrap. (Battocletti, 2016)

At the steel work the tube piles are formed by cold rolling steel sheet raw material to a circular form and then welded together and cut to the preferred sizes. The raw material for the top plate is a long steel sheet that can be cut to the preferred size at the manufacturing site.

To manufacture the round form of the SS Piles hot rolling technique is used. To produce on tone of SS Piles 1091kg of steel is needed, the steel waste from the production process is reused at the plant.

Raw material Conical Sleeve

The conical sleeve is used to attach steel pipes together, so one sleeve is made for connecting two steel pipes. With our FU of 6m only half the conical sleeve weight will be calculated with. The weight can be seen in Table 1.

The sleeve is made 30% in BMZ steelwork in Zhloblin Belarus and 70% in Monravia, Czech Republic.

The steelwork BMZ produces the raw material for the conical sleeve using Electric Arc Furnace (EAF) technology. For the EAF a high amount of recycled steel scrap can be used as input material. In this case 93% of the raw material comes from recycles steel scrap. The specific site data for BMZ will be used to represent all the suppliers of raw material for the conical sleeve. (Melnikov, 2016)

To produce on tone of conical sleeves 1091kg of steel is needed, the steel waste from the production process is reused at the plant. (Melnikov, 2016)

The steel quality is S355J2.

Raw material Top Plate

The top plate is attached at the upper end of the connected SS piles. The raw material to the top plate is made 10% in CMC, Poland and 90% in Monrovia, Czech Republic. The weight of the top plate can be seen in Table 1. The steel quality is S355J2 which is the same as for the steel pipes and the same data for representation will be used.

Raw Material Rock Shoe

The rock shoe is welded on the lower end of the connected SS piles. Depending on the size the rock shoe has different design. The rock shoe is a hardened dub that is connected to the bottom end of the steel pipe in the smaller dimensions. In the bigger dimensions there is instead welded

In accordance with ISO 14025 and EN 15804

reinforcements in the end. The hardened dub is made in Köyliö, Finland with the steel quality according to E8815/445. Data to represent the rock shoe is generic data from ecoinvent 3.3

Core processes (from gate-to-gate). Includes life cycle stages referred to as A2 Transport and A3 Manufacturing.

All finishes raw material is transported to Kretinga Lithuania.

The finished steel pipes are transported 2029km from Arvedi 2029km, the distance from Stalprodukt is 617km and the distance from the Turkish steelwork is 2820km.

The finished conical sleeve is transported with lorry to Kretinga, Lithuania. From Zhloblin the distance is 770km and from Monrovia the distance is 1300km.

The finished raw material to the top plate is transported with lorry to Kretinga, Lithuania. From CMC in Poland the transport distance is 617km and from Monrovia the distance is 1300km.

The rock shoe is transported 877km from Köyliö, Finland.

In Kretinga, Lithuania the rock shoe is constructed by the raw material and welded on the end of the steel pipe. The energy demand when constructing and welding is depending on the dimension. The total energy demand for all manufacturing in Kretinga for the SS pile in kWh can be seen in the table below.

Dimensions	Energy in kWh
Outer diameter and thickness	
88,9*6,3mm	44,0
168,3*10mm	36,5
323,9*12,5mm	112

The energy in Kretinga comes to 90% from renewable sources as wind and solar, the other 10% comes from natural gas. Other consumables are 0,5l lubricating oil per ton processed. (Eriksson, CEO, Scandia Steel Förvaltning AB, 2017)

The manufacturing process uses 2I of coolant and 3kg waste per tone steel processed. 0,5kg waste is generated per processed ton. This waste is recycled by an external company that comes to the facility in Kretinga to fetch the waste.

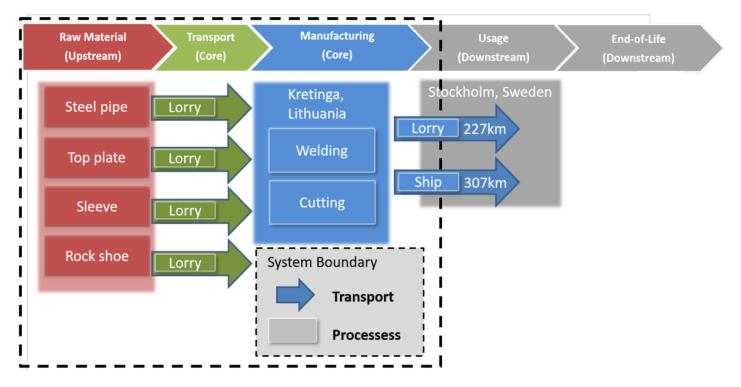
The SS piles are offered in several different dimensions. Table 1 below show the weight for 1 declared unit of the finished product and its components in different dimensions. (Eriksson, CEO, Scandia Steel Förvaltning AB, 2017)

Dimensions Outer diameter and thickness	Total weight in kg	Steel pipe	Top plate	Rock shoe	Conical Sleeve	Factor difference between dimension 88,9*6,3	Meter per tone
88,9*6,3mm	85,8	76,8	2,90	2,60	3,50	-	75
168,3*10mm	287,8	234	12,1	19,1	22,6	3,4	23
323,9*12,5mm	734,4	576	38,4	80,0	40,0	8,6	9

Table 1, show common dimensions in mm of SS piles on the market and the weight in kg per declared unit.

Downstream processes. Includes only the transport to construction site A4.

The end market is assumed to be Stockholm, Sweden. From Kretinga, Lithuania the finished product is transported with lorry 169km to Ventspils, Latvia. From Ventspils it is loaded on a cargo ship and transported 307km to Nynäshamn, Sweden. From Nynäshamn the lorry continues 58km to Stockholm.


In accordance with ISO 14025 and EN 15804

The figure below shows an overview of the included and accounted modules and life cycle phases.

Proc	duct st	age		ruction s stage		Use stage					End of life stage			ge	Resource recovery stage	
Raw materials	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
X	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

X = Module is accounted for MND = Module Not Declared

An overview of the life cycle for SS Piles from Scandia Steel and the included processes can be seen in the figure below.

After the completeness check all materials and processes are found to be included and represented in a full life cycle Cradle to Grave perspective.

In accordance with ISO 14025 and EN 15804

Declared Unit	The declared unit is 6m of finished product
Product group classification	UN CPC 41244
Goal and Scope	The result will be used to understand where the environmental burden for the products occurs during the life cycle and aims to lay a road map for development to decrease this burden. The intended use is also to optimize the choice of steel pipes and steel cores during a construction from an environmental perspective. The audience is in first hand construction companies and contractors but also producers of similar steel products.
Manufacturing Site	UAB Scandia Steel Baltic Vytauto 151 97133 Kretinga Lithuania
Geographical Area	Europe
Compliant with	This EPD follow the "Book-keeping" LCA approach which is defined as attributional LCA in the ISO 14040 standard. In accordance with ISO 14025 and EN 15804
	This EPD follow the PCR 2012:01 version 2.2 Construction products and construction services
Cut-Off Rules	For this LCA study a 1 % cut off rule was applied.
Background Data	Every generic LCI data comes from ecoinvent 3.3
Reference year for data	For specific data 2016 is the reference year. The background data from ecoinvent are from 2012-2016
Allocations	Polluter Pays / Allocation by Classification There are no co-products in the production and therefore no need for co-product allocation.
Impact Assessment methods	Total use of renewable and non-renewable resources was calculated with Cumulative Energy Demand 1.09 method. Emission of greenhouse gases was calculated using the IPCC 2013 GWP method with a 100 year horizon.
	Emission of acidifying substances, Emission of substances to water contributing to oxygen depletion, Emission of gases that contribute to the creation of ground-level ozone, Abiotic depletion, and ozone depletion emissions where all calculated with the CML-IA baseline method.
Based on LCA Report	Miljögiraff LCA Report 103 Scandia Steel
Software	SimaPro 8.4

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

Product contain no substances in the REACH Candidate list. Product contain no substances in the Norwegian priority list.

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

Environmental performance

The tables below show the renewable and non-renewable resources, the quantities of waste generated, the amount of secondary material used and the consumption of net fresh water in the production of 1 declared unit i.e. 6m of finished product with the dimensions 88,9*6,3mm. To get the result also for different dimension multiple the result with the factor stated in Table 1.

	able resources									
			A1	A2, A3	A4,					
		UNIT	UPSTREAM	CORE	DOWNSTREAM	TOTAL				
Non-Renewable primary resources: energy										
Total		MJ	1338	291	70	1698				
Energy	Hard Coal	MJ	614	12,1	4,2	630				
	Petroleum	MJ	344	15,6	3,7	363				
Non-Rene	wable primary r	esources	s: raw material							
Total		MJ	0	0	0	0				
Total use of non-renewable primary energy										
		MJ	1338	291	70	1698				

Non-renewable resources

Renewable resources

			A1	A2, A3	A4,					
		UNIT	UPSTREAM	CORE	DOWNSTREAM	TOTAL				
Renewable primary resources: energy										
Total		MJ	114	4	1	119				
Renewable	e primary resou	rces: raw	/ material							
Total		MJ	0	0	0	0				
Total use	Total use of renewable primary energy									
		MJ	114	4	1	119				

Waste

	UNIT	A1 UPSTREAM	A2, A3 CORE	A4 DOWNSTREAM	TOTAL					
Hazardous Waste disposed										
Total	kg	0,1	0,1	0,01	0,21					
Non-Hazardous W	laste dis	sposed								
Total	kg	0,75	0,01	0,01	0,77					
Radioactive Waste	Radioactive Waste disposed									
	kg	0,02	0,01	0,001	0,031					

Secondary Material

	UNIT	A1 UPSTREAM	A2, A3 CORE	A4 DOWNSTREAM	TOTAL				
Secondary material used: Scrap metal									
Total	kg	62,5	0	0	62,5				

Use of net fresh water

	UNIT	A1 UPSTREAM	A2, A3 CORE	A4 DOWNSTREAM	TOTAL
Net fresh Water					
Total	m³	0,04	0,04	0,42	0,48

Potential Environmental Impact Cradle to Gate life cycle 6m of SS Piles

	UNIT	TOTAL	A1 UPSTREAM	A2, A3 CORE	A4 DOWNSTREAM
Global warming potential	kg CO2-e	125,0	108,6	11,9	4,4
Acidification potential	kg SO2-e	0,6	0,6	0,0	0,0
Eutrophication potential	kg PO43-e	0,2	0,2	0,0	0,0
Photochemical oxidant creation potential	kg C2H4-e	0,1	0,1	0,0	0,0
Ozone depletion,	kg CFC 11-e	0,0	0,0	0,0	0,0
depletion of abiotic resources (elements),	kg Sb-e	0,0	0,0	0,0	0,0
depletion of abiotic resources (fossil),	MJ	1576,9	1225,5	283,5	67,9

Contact information:

UAB Scandia Steel Baltic Upplandsgatan 7

Upplandsgatan 7 111 23 Stockholm Sweden www.scandiasteel.se

LCA and EPD Author

Miljögiraff AB Pär Lindman Södra Larmgatan 6, 411 16, Göteborg, Sweden www.miljogiraff.se

The International EPD System

EPD International AB 100 31 Stockholm Box 210 60 Sweden http://www.environdec.com

Third Party Verifier

Extracon AB

Göran Brohammer Hulanvägen 14 427 38 Billdal Sweden www.extracon.se

References

Ambrazaitis, N. (2016, 05). Production Manager, UAB Scandia Steel, Tel: +370 62 08 22 74, Epost: nerijus@scandiasteel.se. (P. Lindman, Interviewer)

Battocletti, N. (2016, 05). Quality manager Arvedi Tubi Acciaio S.p.A. (P. Lindman, Interviewer)

- Bauer, C., Althaus, H.-J., Weidema , B., & Hirschier, R. (2009). *Code of practice. Ecoinvent report No. 2.* St. Gallen: Swiss Centre for Life Cycle Inventories.
- Baumann, H., & Tillman, A. (2004). *Liftarens guide till LCA.* Lund, Sweden: Studentlitteratur ISBN: 91-44-02364-2.
- Carlsson, R., & Pålsson, A.-C. (2011). *Livscykelanalys ringar på vattnet.* . SIS Förlag 978-91-7162-652-3.
- ecoinvent, Hirschier, R., Weidema, B., Althaus, H.-J., Bauer, C., Doka, G., . . . Wernet, G. (2009). *Code of practice. ecoinvent report No. 2.* St. Gallen: Swiss Centre for Life Cycle Inventories.
- EPD®, T. I. (2016-03-09). *PCR 2012:01 v. 2.2 Construction products and construction services.* The International EPD® System.
- Eurostat. (2016, 05 23). Retrieved from Eurostat: http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=tsdpc 240&language=en
- Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A., Struijs, J., & Zelm, R. v. (2009). *ReCiPe* 2008-A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Holland.
- Guinée, J., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., Koning, A. d., . . . Sleeswijk, A. (2004). Handbook on Life Cycle Assessment - Operational Guide to the ISO Standards. Kluwer Academic Publications.
- ISO 14040. (2006). Environmental Management Life cycle assessment Principles and framework (SS-EN ISO 14040:2006). Stockholm, Sweden.: Swedish Standards Institute (SIS förlag AB).
- ISO 14044. (n.d.). Environmental Management Life cycle assessment Requirements and guidelines (SS-EN ISO 14044:2006). Stockholm, Sweden: Swedish Standards Institute (SIS förlag AB).
- Lindman, P. (2017-11-30). Life Cycle Assessment Steel pipe piles, SS Piles and SSdr piles Miljögiraff Report 103. Kalmar: Miljögiraff AB.
- Łyczak, Ł. (2016, May). Sales Department Stalprodukt AS.
- Marcus Eriksson. (2016, 05 25). Miljö och kvalitéansvarig, Mob. +46 708 990 941 E-mail: marcus@scandiasteel.se. (P. Lindman, Interviewer)
- Melnikov, A. (2016, 05). Deputy Chief of Sales Department BMZ. (P. Lindman, Interviewer)

Programme-related information and verification

This EPD follow the PCR 2012:01 v. 2.2 Construction products and construction services.

Product Category Rules review was conducted by: The Technical Committee of the International EPD® System. Contact via info@environdec.com

Independent verification of the declaration and data, according to ISO 14025:2006:

EPD Process Certification (internal)

☑ EPD Verification (external)

Third party verifier: Göran Brohammer, Extracon AB Approved by the International EPD System