ENVIRONMENTAL PRODUCT DECLARATION

THE INTERNATIONAL EPD® SYSTEM

In accordance with ISO 14025 for **SEMI-ANILINE/CORRECTED LEATHER** from **FINCO 1865 S.P.A**.

PROGRAMME: The International EPD® System <u>www.environdec.com</u>	EPD REGISTRATION NUMBER:	S-P-07941
PROGRAMME OPERATOR:	PUBLICATION DATE:	VALID UNTIL:
EPD International AB	December 21, 2022	December 21, 2027

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com.

PROGRAMME INFORMATION

Programme

The International EPD® System

EPD International AB Box 210 60 SE-100 31 Stockholm Sweden

www.environdec.com info@environdec.com

EPDs within the same product category but from different programmes may not be comparable.

Product category rules (PCR): Finished bovine leather, 2011:03, version 3.01, UN CPC 2912

PCR review was conducted by: The Technical Committeee of the International EPD® System; Chair of the PCR review: Maurizio Fieschi, info@environdec.com

Independent third-party verification of the declaration and data, according to ISO 14025:2006: EPD process certification EPD verification

Verified Accreditation Body:

Accredited by:

Epsten Group, Inc. 101 Marietta St. Suite 2600, Atlanta, GA 30303 EPD International AB

Procedure for follow-up of data during EPD validity involves third party verifier: Yes

🗌 res

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

COMPANY INFORMATION

Owner of the EPD

Finco 1865 S.P.A.

rocco.finco@finco1865.it

Via S. Rocco 120, 36061 Bassano del Grappa VI Vicenza, Italy

Company Description

Tradition, Quality and Reliability are the three words which best describe us. Celebrating over 150 years of History, Conceria Bernardo Finco is the oldest tannery in Italy to be still family run, having recently arrived at its sixth generation. The foundation of Conceria Bernardo Finco is officially dated 1865 in Gallio (Vicenza province), in the suggestive mountains of Asiago plateau, even though reports highlight those tanneries around the area were already active from the 18th Century. The group today is active in both production and sales of bovine leather. Destinations include, for the largest part, upholstery and hospitality/ho.re.ca. sectors, as well as shoe leather, leather garments and automotive as after-market. Characteristics of our products are the exclusively European origin of hides and the commitment for high quality; hence the upper market placement, in the name of reliability and at a competitive price. This is evident in those pure aniline and full grain articles, especially for the waxed and oiled hides, which bear the characteristic "pull-up" effect, very appreciated in the top segments. The markets covered by Finco tannery are mainly North American, Far East and European as well as national market; however long running exchanges have been active in all continents.

Name and Location of Production Site

The Semi-Aniline/Corrected Leather is produced in the Finco 1865 S.P.A. plant located in Bassano del Grappa VI, Vicenza, Italy.

PRODUCT INFORMATION

Product Name

Product Identification

Semi-Aniline/Corrected Leather

The product is identified as "Other leather, of bovine or equine animals, furless-CPC 2912", according to CPC (Central Product Classification)

Product Description

Color and structural uniformity are key to conceptualize articles that respond to dynamic standards of living. Through aniline dyes and a finishing correction, the structure of the hides highlights warm tones and tactile softness. Chromatic balance and a supple touch highlight the articles' texture and natural characteristics including hide grain and growth marks, and offer to the eye visual solidity and appeal.

Sample of Signature Wine of this product family

UN CPC Code

Other leather, of bovine or equine animals, furless- CPC 2912.

Geographical Scope

Global

LCA INFORMATION

Declared unit

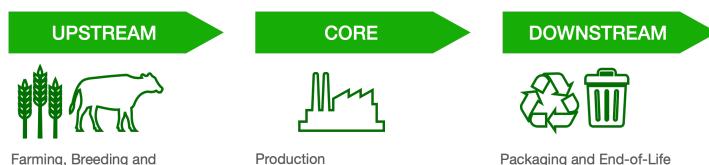
Reference flow

Product thickness

Time representativeness

Database(s) and LCA Software used

The declared unit is the production of 1 m² of "finished bovine leather". measured according to ISO standard 11646.


1.58 kg/m²

1.0-1.2 mm (>70%), 1.4-1.6mm (>25%), 0.8-0.9mm or 2.0-2.2mm (<5%)

2020

Agrifootprint 5.0, Ecoinvent 3.6, SimaPro 9.1.1.7 Generic data were used for upstream hide production.

Processes

Farming, Breeding and Slaughtering

Production

System Diagram

UPSTREAM Processes

- Raw materials extraction for farming and cattle breeding
- Farming
- Cattle breeding
- Transportation of animals to the slaughterhouse
- Slaughterhouse
- Production of chemicals and accessories used to manufacture leather
- Production of primary and secondary packaging materials

CORE Processes

- Transportation of raw materials to the production factory
- Electricity and heat energy consumption in the production stage
- Fresh water consumption in the production stage
- Maintenance activities
- Processes required for manufacturing the finished bovine leather
- Emissions to air and water
- Production waste
- Transportation of waste and by-products Finco 1865 S.P.A

DOWNSTREAM Processes

 End-of-life of the packaging used to ship the finished leather

Description of System Boundaries (as specified by the PCR)

Excluded Lifecycle Stages (as required by the PCR)

Cradle-to-Grave

- Transportation of the finished leather to the customer
- Use phase
- End-of-life of the finished product

LCA practitioner: WAP Sustainability Consulting

CONTENT DECLARATION

More Information

Product

Chemicals in finished bovine leather subjected to legal limits. The production of the below substances falls under the upstream life cycle stage, while the use of them in manufacturing occurs in the core life cycle stage. The total of all chemicals is less than 1% of the total mass, by gross weight.

Substance	Units of Measurement (parts per million)	Total	Legal Limits
Chrome	ppm	<3	3 ppm
Formaldehyde	ppm	N.D.	75 ppm
Pentachlorophenol	ppm	N.D.	5 ppm
Azo Dyes	ppm	N.D.	30 ppm

Packaging

Distribution packaging of the finished product.

Material	Unit	Quantity	Recycled content
Wood pallet	kg/m²	0.152	Not applicable
Cardboard box	kg/m²	0.073	Not specified
Paper documentation	kg/m²	0.017	Not specified
PE film	kg/m²	0.008	Not specified

ENVIRONMENTAL PERFORMANCE

					<u> </u>]
Potential Env	ironmental Impact [El	N 15804+A2]				
Parameter		Unit	Upstream	Core	Downstream	TOTAL
	Fossil	kg CO₂ Eq.	13.2	0.865	0.00321	14.1
Global Warming	Biogenic	kg CO₂ Eq.	0.404	0.289	7.98	8.68
Potential (GWP)	Land Use and Land Change	kg CO₂ Eq.	1.04	0.000166	9.40 x 10 ⁻⁷	1.04
	TOTAL	kg CO₂ Eq.	14.7	1.15	7.99	23.8
Acidification Poter	ntial (AP)	mol H⁺ Eq.	0.592	0.00188	0.0000184	0.593
Eutrophication Pot	ential (EP), Freshwater	kg P Eq.	0.00415	0.000130	4.38 x 10 ⁻⁷	0.00428
Eutrophication Pot	ential (EP), Marine	kg N Eq.	0.219	0.00207	0.0000624	0.221
Eutrophication Pot	ential (EP), Terrestrial	mol N Eq.	2.56	0.00425	0.0000683	2.57
Formation Potentia (POCP)	al of Tropospheric Ozone	kg NMVOC Eq.	0.0547	0.00140	0.0000235	0.0560
Ozone Depletion F	Potential (ODP)	Kg CFC 11 Eq.	4.84 × 10 ⁻⁷	9.18 x 10 ⁻⁸	6.83 × 10 ⁻¹⁰	5.77 × 10 ⁻⁷
Abiotic Depletion I	Potential (ADP) - Elements	kg Sb Eq.	0.000137	1.70 X 10 ⁻⁶	2.17 X 10 ⁻⁸	0.000139
Abiotic Depletion I Resources	Potential (ADP) - Fossil	MJ, net calorific value	134	11.9	0.0509	146
Water Deprivation	Potential (WDP)	m³, Eq.	20.5	-2.97	0.00220	17.6
Use of Resou	rces					
Parameter		Unit	Upstream	Core	Downstream	TOTAL
D.i.e.	Used as Energy Carrier	MJ, net calorific value	104	0.712	0.000793	105
Primary Energy Resources – Renewable	Used as Raw Materials	MJ, net calorific value	0	0	0	0
Kenewable	TOTAL	MJ, net calorific value	104	0. 712	0.000793	105
	Used as Energy Carrier	MJ, net calorific value	134	11.9	0.0509	146
Primary Energy Resources – Non-Renewable	Used as Raw Materials	MJ, net calorific value	0	0	0	0
Non Kenewable	TOTAL	MJ, net calorific value	134	11.9	0.0509	146
Secondary Materia	al	kg	0	0	0	0
Renewable Secon	dary Fuels	MJ, net calorific value	0	0	0	0
Non-Renewable S	econdary Fuels	MJ, net calorific value	0	0	0	0
Net Use of Fresh \	Water	m ³	0.555	-0.0688	0.0000534	0.486

Waste Production					
Parameter	Unit	Upstream	Core	Downstream	TOTAL
Hazardous Waste Disposed	kg	0.000484	0.0000228	7.78 x 10 ⁻⁸	0.00050 7
Non-Hazardous Waste Disposed	kg	0.889	0.0875	0.233	1.21
Radioactive Waste Disposed	kg	0.000202	1.19 × 10 ⁻⁵	3.09 × 10 ⁻⁷	0.000214
Output Flows					
Parameter	Unit	Upstream	Core	Downstream	TOTAL
Parameter Components for Reuse	Unit kg	Upstream o	Core o	Downstream 0	TOTAL 0
Components for Reuse	kg	0	0	0	0
Components for Reuse Material for Recycling	kg kg	0	0 0.363	0 0	0 0.363

REFERENCES

- General Programme Instructions of the International EPD® System. Version 3.01.
- PCR 2011:03. Finished Bovine Leather. Version 3.01
- ISO 11646:2014, Leather measurement of area
- Agri-footprint version 5.0
- Ecoinvent version 3.6
- EN 15804+A2, CEN 2019.