

ENVIRONMENTAL PRODUCT DECLARATION

ISOPIPE S.A. – TC Flexible Elastomeric Foam Insulation

In accordance with ISO 14025 and EN 15804 + A1

EPD Registration Number

Program

Program operator

EPD International AB

S-P-05562

The International EPD® System www.environdec.com

Publication Date 28/02/2022

Date of Validity 27/02/2027

UN CPC 362: Other rubber products

PROGRAM INFORMATION

Program

The International EPD® System EPD International AB, Box 210 60 SE-100 31 Stockholm, Sweden

www.environdec.com info@environdec.com

Owner of the EPD

Nafpliou & Daskaloyianni, 144 52 Metamorfosis Attica

73rd km Nat. Road Athens -Lamia, 341 00 Ritsona Halkida +302106626860

www.isopipe.eu export@isopipe.gr

Product category rules (PCR):	PCR 2012: services (E
PCR review was conducted by:	The Techr System Co
ndependent third-party verification of the declaration and data, according to ISO 14025:	EPD pr
Verified by:	Dr-Ing. Ni nikolay.m
Technical support:	SustCherr www.susto

н

2:01 Construction products and construction (EN 15804:A1), v.2.34 Date 2021-11-08

hnical Committee of the International EPD Contact via info@envrirondec.com

process certification

verification (external)

Nikolay Minkov Greenzero.me GmbH minkov@greenzero.me

em Consulting S.A. stchem.gr

COMPANY PROFILE

ISOPIPE S.A. was founded in 1997 and its industrial premises cover over 30,000 m2. ISOPIPE S.A. specialized in vertical production of insulation worldwide, and it is engaged in the production of the widely used closed cell synthetic rubber insulation with the trademark ISOPIPE.

ISOPIPE S.A.' s mission is to manufacture high quality, certified products and promote them all over the world, always respecting human health and the environment. Our vision is to constantly enhance premium testing procedures in our production lines, through our Research & Development Department (R&D), and to stay contemporaneous with global, emerging needs.

ISOPIPE S.A. is certified with EN ISO 14001:2015, EN ISO 9001:2015 and CE. It exports to more than 40 countries, including China, Europe and Middle East.

Environmental Sustainability

Everything that we need for our survival and well-being, depends either directly or indirectly, on our natural environment. In **ISOPIPE S.A.**, we are all aware of this. Respecting the quality of the environment around us is as important as respecting the quality in our own production.

ISOPIPE S.A. also encourages environmentally friendly actions such as recycling and minimization of energy consumption. This is not only part of the company culture, but it is also transmitted to every member of our group. Further information on www.isopipe.eu

Further information on www.isopipe.eu

COMPANY PROFILE

Through interpersonal communication we have managed to build **trustworthy** and long-lasting relationships with our colleagues and partners, always being honest and consistent to our core values.

ISOPIPE S.A. was built and developed based on company's motto

"Rebuild the future"

ISOPIPE S.A. mission is based on the values of:

Every member of ISOPIPE is explicitly informed about its core values and goals, in order to better promote company identity. Following international regulations, we always manage to provide high quality, certified products to our associates. For us, the key factor of our company's success is **honesty** between all our partners, colleagues as well as the final products provided.

Our passion is **people** we are working with. For that reason, we mostly value their personality, while at the same time we always manage to expand their knowledge and capabilities, thus creating value, both for them and the organization. Towards that direction and trying to reach our optimum potential, we regularly arrange useful internal meetings with general topics such as time management and strategic communication that cultivate our personality.

For us, **safety** of our people is as matter of utmost importance. A friendly and stable working environment is necessary for building strong relationships between all our colleagues and partners, through mutual teamwork and respect to each person's needs and rights.

Based on company's motto "Rebuild the future", we are supporters of **environmental sustainability**, fact which is incorporated in our company's function and daily activities. Therefore, we are trying to reduce the consumption of non environmentally friendly substances and promote materials recycling.

ISOPIPE TC Flexible Elastomeric Foam Insulation is a Nitrile Butadiene Rubber (NBR) based foam insulation with a significantly high percentage of 98.5% of closed cells. ISOPIPE TC ensures long-term and reliable thermal efficiency. ISOPIPE TC presents the following benefits:

- Excellent insulation properties thanks to closed cell structure
- Outstanding thermal performance and condensation resistance
- Great oil and grease resistance as an NBR based product
- Wide range of sizes and forms, making its application easier
- Short lead rime due to high flexibility of production
- Performance of ISOPIPE TC is guaranteed through continuous supervision and factory tests

ISOPIPE TC Flexible Elastomeric Foam Insulation is suitable for the following applications, covering a wide range of needs:

Technical Data

Indicatively, some mechanical and thermal properties of ISOPIPE TC Flexible Elastomeric Foam Insulation are reported in the adjacent table.

Product Range

- Pipes: Available in thickness of 6, 9,1 3, 19, 25, 32, 40 and 50mm and pipe diameters up to 139mm. Standard length is 1 and 2 m.
- Rolls: Available in thickness of 6, 10, 13,1 9, 25, 32, 40 and 50mm, in width of 1m and length up to 30m.
- Coil: Highly practical for installers and technicians. No scraps; cut only the necessary length and store the rest.

Property	Technical Data	Test Method
Thermal Conductivity (λ)	-20 °C -0.031W/mK	EN 12667
	0 °C –0.033W/mK	
	20 °C -0.035W/mK	
	30 °C -0.036W/mK	
Permeability (µ)	≥ 7,000	EN 13469
		EN 12086
Operating Temperatures	-50 °C to + 110 °C	EN 14706
		EN 14707
Fire Rating (FR)	Coil, Pipes: B-S2, d0	EN 13501-1
	Class 0, Class 1	BS 476
	Class A or Class 1	ASTM E84
	Rolls: B-S3, d0	EN 13501-1
Density	60 kg/ m3, ±10 kg/m3	EN 13467 & EN 1602EN
Tensile Strength (Pa)	> 0.15 MPa	ISO 1798
Elongation at break	> 150%	
Weather Resistance	Good	EN ISO 1798
Oil & Grease Resistance	Very Good	ASTM D 471

Base Materials

The composition of a reference ISOPIPE TC Flexible Elastomeric Foam Insulation product is indicatively reported in the next table. The contribution of material categories to the reference product is presented in % in weight.

ISOPIPE TC Flexible Elastomeric Foam Insulation									
Ingredient	Composition (%)								
Flame retardants	28.0								
Blowing Agent	3.0								
Rubber & Polymers	31.0								
Fillers & Pigments	17.0								
Vulcanization, Additives, Plasticisers	21.0								

ISOPIPE TC Flexible Elastomeric Foam Insulation contains Chlorinated paraffin and C, C' - Azodiformamide, which are classified as "Substance of Very High Concern", under the European chemical Directive REACH. These components are considered 'very toxic to aquatic life, very toxic to aquatic life with long lasting effects and may cause harm to breast-fed children and PBT/ vPvB' and can cause 'allergy or asthma symptoms or breathing difficulties if inhaled due to respiratory sensitizing properties', respectively.

Nor	ninal Pip	e Diamet	er	Int. Diameter	Nominal Wall Thickness											
Fe	Cu	1	PP	-	6mm	- 1/4"	9mm	- 3/8″	13mm	- 1/2"	19mm	- 3/4"	25mi	n – 1″	32mm -	- 1 1/4"
Inch	mm	Inch	-	min-max	Code	m/Crt	Code	m/Crt	Code	m/Crt	Code	m/Crt	Code	m/Crt	Code	m/Crt
-	6	1/4"	-	7-8	6x6	1432	9x6	280	13x6	160	19x6	88				
-	10	3/8"	-	11-12	6x10	300	9x10	228	13x10	142	19x10	82	25x10	48		
-	12	1/2"	-	13-14	6x12	274	9x12	200	13x12	126	19x12	76	25x12	46		
1/4"	15	5/8"	-	16-17	6x15	230	9x15	152	13x15	110	19x15	62	25x15	44	32x15	30
3/8"	18	3/4"	-	19-20	6x18	190	9x18	142	13x18	98	19x18	58	25x18	40	32x18	30
1/2"	22	7/8″	-	23-24	6x22	160	9x22	116	13x22	78	19x22	52	25x22	30	32x22	28
-	25	1″	25	26-27	6x25	130	9x25	92	13x25	70	19x25	46	25x25	30	32x25	26
3/4"	28	1 1/8″	-	29-30	6x28	120	9x28	86	13x28	66	19x28	44	25x28	30	32x28	24
1″	35	1 3/8″	-	36-37	6x35	108	9x35	70	13x35	52	19x35	30	25x35	24	32x35	22
1 1/4"	42	1 5/8″	40	43-44			9x42	60	13x42	48	19x42	30	25x42	22	32x42	16
1 1/2"	48	1 7/8″	-	49-50			9x48	56	13x48	42	19x48	26	25x48	18	32x48	16
-	54	2 1/8″	50	55-56			9x54	46	13x54	34	19x54	24	25x54	18	32x54	16
2″	60	2 3/8"	-	61-62			9x60	42	13x60	30	19x60	22	25x602	18	32x60	12
-	64	2 1/2"	63	65-66			9x64	40	13x64	28	19x64	18	5x64	16	32x64	12
2 1/2"	76	3″	75	77-79			9x76	34	13x76	24	19x76	18	25x76	12	32x76	10
3″	89	3 9/16"	90	90-92			9x88	30	13x88	22	19x88	14	25x88	12	32x88	10
3 1/2"	108	4 1/4"	110	110-112			9x108	24	13x1081	20	19x108	12			32x108	8
4"	114	4 9/16"	-	116-118			9x114	24	3x114	20	19x114	12	25x114	8	32x114	8
5″	139	5 1/2"	-	141-143							19x139	8	25x139	6	32x139	6


MANUFACTURING PROCESS

ISOPIPE TC Flexible Elastomeric Foam Insulation production is a continuous process and is distinguished in the following phases:

Mixture preparation \rightarrow Product molding by injection \rightarrow Expansion \rightarrow

Sample quality control -> Product packaging -> Various manufacturing controls

PRODUCTION OF SYNTHETIC RUBBER COMPOUNDS QUALITY CONTROL OF SYNTHETIC RUBBER COMPOUNDS

PACKING & STORAGE

Declared Unit

The declared unit is 1 kg TC Flexible Elastomeric Foam Insulation. Packaging material is included but packaging weight is not considered within the 1 kg of the declared unit.

System boundary

This EPD covers the **cradle-to-gate** approach. Therefore, the defined system boundaries include Raw material production and supply (A1), Transportation (A2) and Manufacturing (A3) Life Cycle stages.

Product group ranges

ISOPIPE TC Flexible Elastomeric Foam Insulation products present var ous dimension and thickness characteristics. The environmental impact of each specific product code can be determined based on the correlation to the environmental performance of 1 kg of ISOPIPE TC Flexible Foam Insulation. Also, a mass to length conversion factor is declared.

ri-				
ict a-	Conversion factor	Pipes	Rolls	Coil
ole	Kg/m	0.082	0.991	0.331

Proc	luct Si	tage	Construction Process Stage		Process Use Stage							End o	of Life	Stage	Resource Recovery Stage
Raw material	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction, demolition	Transport	Waste processing	Reuse, recycling, or energy recovery potentials
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	G	C	ប៊	
Q	ଷ	ଷ	MND	MND	MND	MND	MND	DNM	MND	MND	MND	MND	MND	QNM	ДNM

Specific

GaBi ts version 10.6.0.110

Rebuild the future!

MND: Module Not Declared

DATABASE

Ecoinvent 3.7.1 & Professional 2021

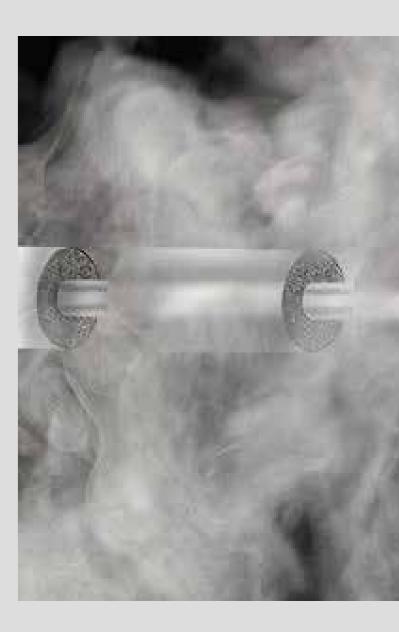
Cut-off criteria

Life Cycle Inventory data for a minimum of 99% of total inflows (mass and energy) to the upstream and core Life Cycle module are being included. Nevertheless, it is determined that the total neglected input flows are much less than 1% of total energy and mass. These neglected inflows refer to any potential mass inputs that have not been identified and measured properly. No inflow was omitted intentionally. The main flows that have been excluded from the modelling of the studied system are:

- 0.6% of TC raw materials have been excluded since those components could not efficiently be determined by a process data set.
- Waste treatment of packaging scrap occurred in Module A3 (carton board, stretch film, etc.) is not taken into consideration.

Assumptions, Allocation and Limitations

- Regarding the exclusion of product life cycle stages and processes, use, end-of-life, and reuse stage have not been accounted for. Also, the capital goods (construction of the site) are not included in this LCA study.
- ISOPIPE S.A. TC Flexible Elastomeric Foam Insulation manufacturing renders no co-products. Thus, there is no need for product allocation.
- Regarding electricity and natural gas consumption in the manufacturing process of ISOPIPE TC Flexible Foam Insulation, an allocation based on the mass of the interested products has been applied. Specifically, the assumption of allocation is proportional to the production volumes of the interested products.
- Waste produced from the manufacturing activities of TC Flexible Elastomeric Foam Insulation manufacturing come in extremely small volumes compared to the overall production of the interested products. Waste is col-lected and treated through recycling and landfill processes.
- A default mean of road transportation "Truck Euro 6 9.3t payload 12 14t gross weight" was assumed. Weighted average of the distance covered, and times needed were taken into account. Regarding ship transportation, "Average ship, 3,500t payload capacity" was assumed due to lack of actual data.


Background data and data quality

For all processes, primary data were collected and provided by ISOPIPE S.A. Data related to material and energy flows of the defined system, which later were expressed in terms of environmental impacts, were acquired from the company developing the EPD and data related to life cycle impacts resulted from calculations based on databases and characterization factors. Primary data refer to August 2020 to July 2021 reference period. Background data were used for processes the producer has no influence on. Background (generic) data were acquired from available trust-worthy databases. All background data are recent and are no more than 10 years old. A compilation of Ecoinvent v.3.7.1 and Professional 2021 databases was used.

Comparability

- EPDs within the same product category but from different programs may not be coparable.
- EPDs of construction products may not be comparable if they do not comply with EN 15804.
- This EPD and PCR2012:01 Construction products and construction services" are available on the website of The International EPD[®]System (www.environdec.com).

ENVIRONMENTAL PERFORMANCE IMPACT INDICATORS

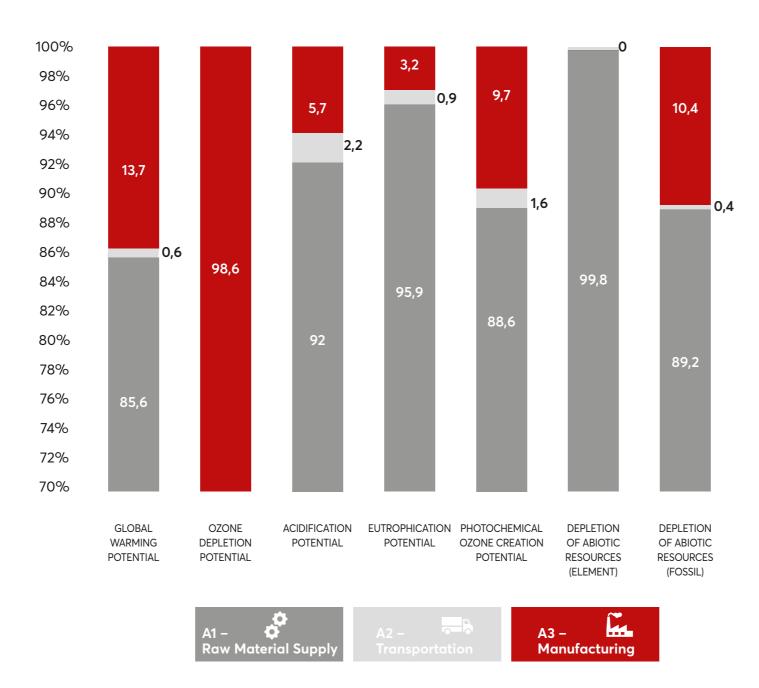
Impact/1 kg ISOPIPE TC Flexible Elastomeric Foam Insulation A1 – Raw Ma ENVIRONMENTAL IMPACT CATEGORIES Global Warming Potential (GWP₁₀₀) kg CO₂ eq. 2.515 **Ozone Layer Depletion Potential** kg R11 eq. 4.693E **Acidification Potential** kg SO₂ eq. 8.595E kg PO4⁻³ eq. **Eutrophication Potential** 2.528E Photochemical Ozone Creation Potential kg C₂H₄ eq. 7.847E Depletion of abiotic resources (elements) kg Sb eq. 2.325E Depletion of abiotic resources (fossil) MJ net calorific value 57.34

o terial	A2 – Transportation	A3 – Manufacturing	TOTAL
15	0.018	0.403	2.936
E-10	-3.579E-14	3.192E-08	3.239E-08
E-03	2.091E-04	5.336E-04	9.337E-03
E-03	2.309E-05	8.480E-05	2.636E-03
E-04	1.441E-05	8.619E-05	8.853E-04
E-03	3.592E-06	4.360E-07	2.329E-03
48	0.248	6.673	64.269

ENVIRONMENTAL PERFORMANCE IMPACT INDICATORS

	Impact/1kg ISOPIPE TC Flexible Elastomeric Foam Insulation						
USE OF RESOURCES		A1 – 🗳 Raw Material	A2 – Transportation	A3 – Hanufacturing	TOTAL		
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ, net calorific value	5.671	0.014	0.239	5.925		
Use of renewable primary energy resources used as raw materials	MJ, net calorific value	-	-	-	-		
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	MJ, net calorific value	5.671	0.014	0.239	5.925		
Use of non-renewable primary energy excluding non- renewable primary energy resources used as raw materials	MJ, net calorific value	58.826	0.253	6.841	65.920		
Use of non-renewable primary energy resources used as raw materials	MJ, net calorific value	-	-	-	-		
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	MJ, net calorific value	58.826	0.253	6.841	65.920		
Use of secondary material	kg	-	-	-	-		
Use of renewable secondary fuels	MJ, net calorific value	-	-	-	-		
Use of non-renewable secondary fuels	MJ, net calorific value	-	-	-	-		
Use of net fresh water	kg	0.017	1.613E-05	8.716E-04	0.018		

ENVIRONMENTAL PERFORMANCE IMPACT INDICATORS


		Impact/ 1 kg IS	Impact/1kg ISOPIPE TC Flexible Elastomeric Foam Insulation							
Waste Categories		A1 – 🗳 Raw Material	A2 – Transportation	A3 – A3 – Manufacturing	TOTAL					
Hazardous waste disposed	kg	3.739E-05	2.993E-09	2.262E-10	3.739E-05					
Non-hazardous waste disposed	kg	0.015	3.742E-05	9.168E-03	0.024					
Radioactive waste disposed	kg	5.438E-04	2.553E-07	2.547E-05	5.695E-04					

INTERPRETATION

The following figure represents the influence of the Life Cycle stages A1, A2, and A3 on the environmental impact indicators formation. It can be clearly noticed that the majority of the analyzed impact categories are mainly influenced by the raw material supply stage (A1).

• ODP is almost exclusively influenced by the manufacturing stage (Module A3).

• The Global Warming Potential (GWP) of 1 kg of TC Flexible Foam Insulation is dominated by 85.6% by the production and supply of Raw materials. Module A2 contributes slightly to the impact category. Module A3 has a relatively smaller influence of 13.7% on the formation of the GWP impact.

• Acidification Potential is mainly influenced by Raw material supply stage. More specifically, Module A1 is accounted for the 92.0% of the impact, whereas Module A3 is only responsible for 5.7%.

• A slightly similar pattern is followed regarding the formation of Eutrophication Potential indicator. Contribution of Module A2 is marginal, where Raw material extraction and production stage (A1) has a dominant share of 96.0%.

• Natural gas combustion at the manufacturing stage is responsible for the participation of Module A3 in impact categories formation.

REFERENCES

- International EPD® System, General Program Instructions for the International EPD System, version 4
- International EPD® System, PCR 2012:01 Construction products and construction services (EN 15804:A1), v.2.34
- International Organization for Standardization (ISO), Environmental labels and declarations Type III environmental declarations - Principles and procedures. ISO 14025:2006
- EN 15804:2012+A1:2013 Sustainability of construction works Environmental product declarations –

Core rules for the product category of construction products

- International Organization for Standardization (ISO), Environmental management Life Cycle assessment
 - Principles and framework. ISO 14040:2006
- International Organization for Standardization (ISO), Environmental management Life Cycle assessment - Requirements and guidelines. ISO 14044:2006
- The International EPD® System The International EPD System is a programme for type III environmental declarations, maintaining a system to verify and register EPDs as well as keeping a library of EPDs and PCRs in accordance with ISO 14025. www.environdec.com
- EN ISO 14001 Environmental Management Systems Requirements
- ISO 14020 Environmental Labels and Declarations General Principles
- Sphera GaBi Product Sustainability software www.sphera.com