Environmental Product Declaration

Steel reinforcing bar manufactured from steel scrap by T A 2000

In accordance with ISO 14025:2006 and EN15804:2012+A2:2019

Programme:

The International EPD® System EPD registered through the fully aligned regional programme/ hub: Latin American Hub, www.epd-latinamerica.com

EPD® Latin America

Programme operator: EPD® International AB

Regional Hub: Latin American Hub of the International EPD® System **EPD registration number:** S-P-00704

Date of publication: 2018-08-23

THIN HIN

Date of validity: 2028-07-12

Geographical scope: Mexico

Revision date: 2023-07-13

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at **www.environdec.com**

ENVIRONMENTAL PRODUCT DECLARATION

Content

T A 2000

General Information

Product Description

Content declaration

LCA Rules

7	Verification and
	registration

Certifications

This EPD was prepared in conformity with the international standard ISO 14025 and EN 15804:2012 +A2:2019 Sustainability of Construction Works; for the steel reinforcing bar manufactured from steel scrap.

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPD of construction products may not be comparable if they do not comply with the Product Category Rules (PCR) "Construction Product" and the EN 15804:2012+A2:2019 Sustainability of Construction Works – Environmental Product Declarations - Core rules for Central Product Classification: UN CPC 4124 Bars and rods, hot rolled, of iron or steel; Environmental product declarations within the same product category but from different programs may not be comparable.

«ΤΥΔ5Δ° 1. T A 2000

T A 2000 S.A. de C.V. is a 100% Mexican steel company, specializing in the manufacture of steel products for construction, special bar quality (SBQ), coated flat steels and commercial profiles.

4 Environmental Product Declaration

T A 2000 has more than 30 years of experience in the manufacture of steel. Innovation and optimization in production processes, have driven the company to renew and diversify its product catalog. In 2016 a cutting-edge technology has been implemented in T A 2000's steelmaking plant: an electric arc furnace (EAF) QUANTUM. The EAF QUANTUM, based on an optimized preheating and melting concept, delivers minimum conversion costs, maximized output, and environmental compliance.

T A 2000's value proposal is to offer its customers quality steel. T A 2000 has been granted with ISO 9001:2015 certification and above all the company focus on offering an unparalleled service, characterized by competitive delivery times and optimal business conditions for the growth of its clients.

T A 2000 is permanently committed to offer the market a dynamic, competitive and quality option. So that, the company have distribution centers in: Orizaba, Mérida; Arriaga, Silao and a commercial office in Mexico City.

2. GENERAL INFORMATION

PRODUCT	CTE
PRODUCT:	STEE
Name of the manufacturer:	T A 2000 S.A. de C.V.
Description of the construction product:	Steel rebar used to reinforce concrete in the and the surrounding concrete.
Declared unit:	1000 kg of steel reinforcing bar manufactu
Construction product identification:	Central Product Classification: CPC 4124 B
Description of the main product components and or materials:	100% Steel manufactured using scrap steel
Life cycle stages not considered:	The modules: A4, A5, B1, B2, B3, B4, B5, B6
Statement content:	 This environmental product declaration is be the stage of input materials used for the ge on national statistics. Definition of the product. Content declaration. Declared unit.
Comparability of EPD of construction products	a. EPD of construction products may notb. Environmental product declarations w
For more information consult	https://tyasa.com/
Sites for which this EPD is representative	Manufacturing Plant ORIZABA: Carretera Federal México-Veracre Tel. 01 (272) 72 4 47 00 Ventas: Ext. 306 Steel Scrap Collection and pre-processing F MÉRIDA: Carretera Federal Mérida- Umán F ARRIAGA: Carretera Arriaga-Tapanatepec K Tel. (045) 96 61 13 56 88 Ventas: (045) 96 6 SILAO: Carretera Silao-León Km. 157, s/n, 0
Intended Public:	B2B (Business to Business)

THE INTERNATIONAL EPD® SYSTEM

EL REINFORCING BAR OF SEVERAL CALIBERS MANUFACTURED FROM STEEL SCRAP

the construction industry. The surface of the rebar is corrugated to limit the relative longitudinal movement between the steel

ured from steel scrap.

Bars and rods, hot rolled, of iron or steel

el as source of iron.

B6, B7.

based on information modules that do not cover aspects of construction stage and use. It contains detailed information on generation of raw material and central process, modules A1, A2, A3, approximations of scenarios C1, C2, C3, C4 and D based

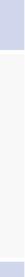
- System boundary.
- Environmental performance.
- Evidence and verifications.

ot be comparable if they do not comply with EN 15804:2012+A2:2019. within the same product category from different programs may not be comparable

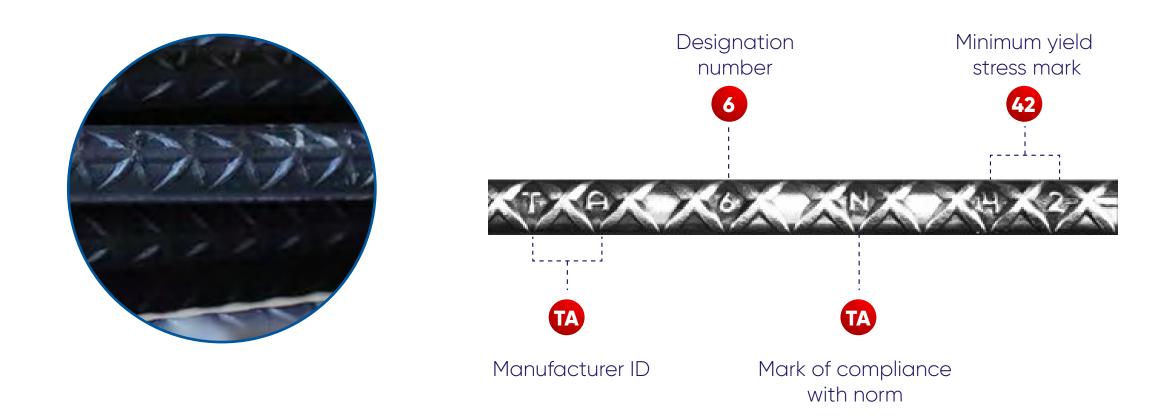
cruz Km. 321, s/n, interior 2, Ixtaczoquitlán, Veracruz, C.P. 94450

Plant

Km. 8.3, s/n, Colonia Ampliación Ciudad Industrial, Umán, Yucatán, C.P. 97390. Tel. 01 (999) 91 9 25 01 Ventas: Ext. 101 Km. 28.5, No. 250, Colonia Emiliano Zapata, Arriaga, Chiapas, C.P. 30462.


66 64 02 82

Colonia Bustamante, Silao, Guanajuato, C.P. 36100. Tel. 01 (472) 72 3 94 32 / 01 (472) 72 3 94 35 Ventas: Ext. 107



3. THE PRODUCT

The steel reinforcing bar (rebar) manufactured by T A 2000 S.A. de C.V. is used as reinforcement of concrete structures in the construction industry.

Steel rebar is a steel product with semi-circular cross section. The surface of the rebar is corrugated to limit the relative longitudinal movement between the steel and the surrounding concrete.

T A 2000 produces TA42 rebar with state-of-the-art technology (EAF QUANTUM) in the city o racruz. The process starts from the steelworks to the final product, which allows the full co involved in production which guarantees compliance with the international standard ASTM-A Mexican standard NMX-B-506-CANACERO-2011 required by regulations of the construction

The characteristics of steel reinforcing bars produced by T A 2000 are provided hereafter:

THE INTERNATIONAL	EPD [®] SYSTEM

Cali	ber*	Designation	Weight		Presen	itation
mm	Inches	number	kg/m	Length (m)	Bent	Straight
9.5	3/8 "	3	0.56	12		
12.7	1/2 "	4	0.994	12		
15.9	5/8 "	5	1.552	12		
19	3/4 "	6	2.235	12		
25.4	1 "	8	3.973	12		
31.8	1 1/4″	10	6.225	12		
38.1	1 1/2″	12	8.938	12		

* Special calibers (7/8" y 1 1/8" y 1 3/8") may be manufactured under client

(i) Table 1. Technical specifications

Ultimate tensile strength	63 kg/mm2	C	aliber	Mandrel diameter
Minimum yield stress	42 kg/mm2	3/8",	1/2", 5/8"	3.5 d
Minimum elongation in	200 mm	3/4′	", 7/8", 1"	5 d
3/8", 1/2", 5/8", 3/4"	9%	1 1/8", 1	1 1/4", 1 3/8"	7 d
7/8", 1″	8%	1	I 1/2″	8 d
1 1/4", 1 1/2"	7%	_		
(j) Table 2.	Mechanical properties		 Table 3. Character properties deter 	eristics of tests for mechanical mination


of Ixtaczoquitlán, Ve-	Characteristic	Value
control on the factors	Temperature	16 ° C
-A-615-G-60 and the	Steering angle	180°
n industry in Mexico.	Other characteristics	 Always keep the mandrel in contact with the rod during bending. Apply a continuous and uniform force.

(j) Table 4. Characteristics

4. CONTENT DECLARATION

The steel rebar manufactured from steel scrap is produced in an electric arc furnace with a percentage 4.1 Recycled material content greater than 90% of recycled material, the material contained in this product is found in Table 5. The total raw materials that make up the product were not declared, only the materials with a more In the Industrial Center of TA 2000 manufactured the steel rebar is manufactured from steel scrap representative percentage that make up the billet. with a percentage greater than or equal to 90% of recycled material.

For reasons of confidentiality, a more detailed description of the composition of the Billet is not made, which is the primary raw material of the steel rebar.

HOMOGENEOUS MATERIAL OR CHEMICAL SUBSTANCES	CHEMICAL SUBSTANCES	WEIGHT %)	MATERIAL WEIGHT PRE AND POST CONSUMER (%)	CAS NUMBER	FUNCTION OF CHEMICAL SUBSTANCE	HEALTH CLASS ¹
Steel scrap	Not applicable	>90 %	90%	Not applicable	Iron content in steel	Not listed
Anthracite	Anthracite	2 %	0%	8029-10-5	Carbon content in steel	Not listed
Ferro silico manganese	Manganese and silicon	1 %	0%	8029-10-5	Carbon content in steel	Not listed
Lime	calcium oxide	3 %	0%	471-34-1	Iron ore sintering agent steel foundry	Not listed
Dolomite	Calcium carbonate magnesium	3 %	0%	16389-88-1	Iron ore sintering agent steel foundry	Not listed
Others	Not applicable	<1 %	0%	Not applicable	Carbon content in steel	Not listed

1 According to EN15804 declaration of material content of the product shall List of Substances of Very High Concern (SVHC) that are listed by European Chemicals Agency.

*Steel manufactured in the Industrial Center of T A 2000 uses 100% steel scrap as source of iron.

** Packaging: The product transported to customers packed with a steel wire rod and a label detailing the product information, but this is an insignificant quantity, which not included in the previous table

4.2 Distribution packaging

Packaging: The product is sent to the customers in no packaging, only the casting number distinction.

(i) Table 5. Content product

¹ According to EN15804 declaration of material content of the product shall List of Substances of Very High Concern (SVHC) that are listed by European Chemicals Agency.

Environmental potential impacts were calculated conformity to EN 15804:2012 +A2:2019 sustainability of construction works and PCR 2019:14 Construction products Version 1.11 UN CPC 4124 bars and rods, hot rolled, of iron or steel. This EPD is in accordance with ISO 14025:2006. Environmental potential impacts were calculated through Life Cycle Assessment (LCA) methodology according to ISO 14040:2006 and ISO 14044:2006. An external third-party ve-rinfication process of the EPD was conducted according to General Programme Instructions for the International EPD® System Version 4.0. Verification includes a documental review and a validation of both the underlying LCA study and documents describing additional en-vironmental information that justify data provided in the EPD.

5.1 Declared unit

1000 kg of steel rebar manufactured from billets that uses 99% ferrous scrap as raw material, manufactured during the year 2022 by TYASA at the Ixtaczoquitlán plant, Veracruz, used by the construction industry as re-inforcement of concrete structures.

5.2 System boundary

The potential environmental impacts were calculated through Life Cycle Assessment (LCA) methodology of steel rebar to ISO 14040:2006 and ISO 14044:2006. This study went through a critical review process in accordance with ISO / TS 14071: 2014. According to EN 15804 section 5.2 the following type of EPD is "cradle to gate with modules C1-C4 and module D (A1-A3 +C+D)". This EPD is based on information upstream processes and core processes, modules A1 to A3, and approximations of scenarios C1, C2, C3, C4, and D based on construction sector statistics in Mexico (see table 6). Does not include A4-A5 Construction stage and B Usage stage.

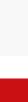
Life A1-A3 A4-A5 Cor ΒU C End

> D Benefits yond th

> > Dec

			EPD		
e cycle stage	Information about the modules contained in the stages	Cradle-to-gate with mod- ules C1-C4 and module D	Cradle-to-gate with modules C1-C4, mod- ule D and optional modules	From cradle to grave and module D	EPD construction ser vices: Cradle to door w modules A1-A5 and o tional modules
	A1) Raw material procure- ment				
8 products stage	A2) Transport	Mandatory	Mandatory	Mandatory	Mandatory
	A3) Manufacture				
Construction stage	A4) Transport		Optional for goods		
	A5) Construction / installa- tion	_	Required for services	Mandatory	Mandatory
	B1) Use				
	B2) Maintenance				
	B3) Reparation				
Usage stage	B4) Replacement	-	Optional	Mandatory	Mandatory
	B5) Remodeling				
	B6) Operational energy use				
	B7) Operational water use				
Products stage A2) Transport A3) Manufa A4) Transport A5) Construction A5) Construction B1) Use B2) Mainter B3) Reparation B3) Reparation B4) Replaced B5) Remodi B6) Operation B7) Operation C1) Deconstruction C1) Deconstruction C2) Transport C3) Waster portion C4) Final distances C4)	C1) Deconstruction, demoli- tion				
d of life stage	C2) Transport	Mandatory	Mandatory	Mandatory	Optional
-	C3) Waste processing				
	C4) Final disposition				
ts and charges be- the system limit	D) Reuse, recycling or energy recovery potential.	Mandatory	Mandatory	Mandatory	-
eclared unit	Inclusion of reference useful life	Optional	Mandatory	Mandatory	-

(i) Table 6. System boundary



Description of the modules included in this DAP.

Description of information modules included in this EPD.

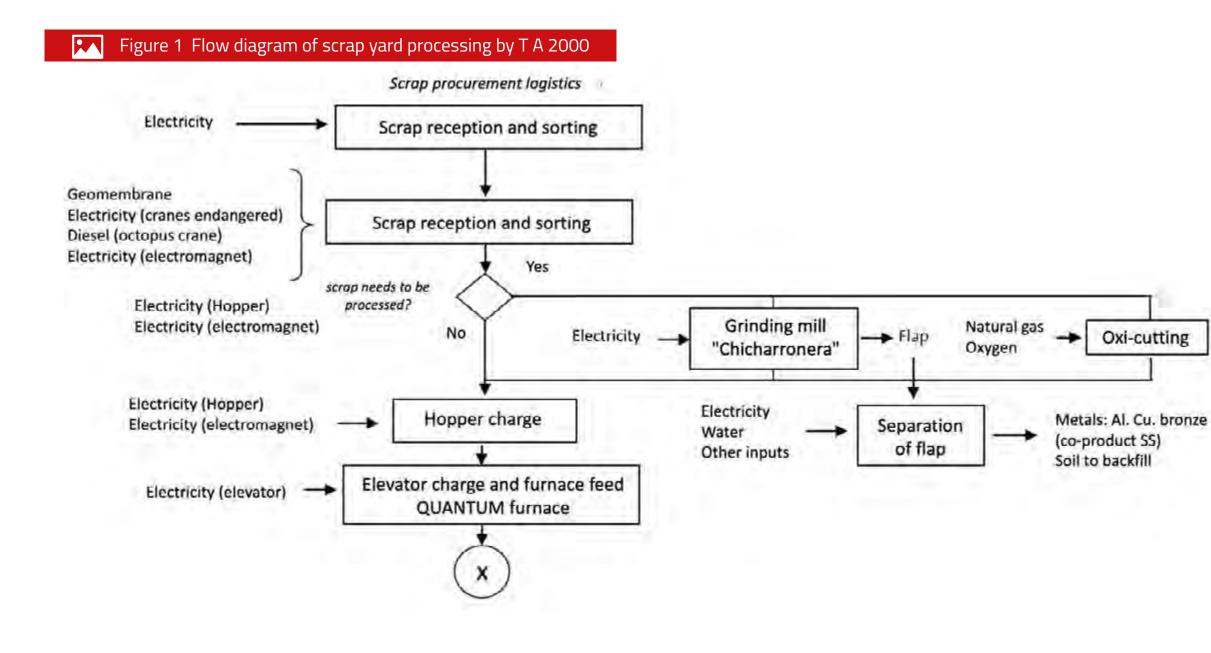
	Prod	luct st	age	truc pro	ns- tion cess ase	Usage stage			End of life stage				Resource recovery stage			
	Raw material supply	Transport	Manufacturing	Transport	Construction facility	Use	Maintenance	Repair	Restoration	Operational energy use	Operational use of water	Demolition/ Deconstruction	Transport	Waste processing	Disposal	Reuse – Recovery – Re- cycling - potential
Module	A1	A2	A3	Α4	A5	B1	B2	B 4	B5	B6	B7	C1	C2	С3	C4	D
Declared modules	х	X	x	ND	ND	ND	ND	ND	ND	ND	ND	x	x	x	x	х
Geography	МХ	МХ	мх	ND	ND	ND	ND	ND	ND	ND	ND	МХ	МХ	мх	мх	МХ
Specific data used		>99%		-	-	-	-	-	-	-	-	-	-	-	-	-
Product variation		ND		-	-	-	-	-	-	-	-	-	-	-	-	-
Site variation		ND		-	-	-	-	-	-	-	-	-	-	-	-	-

X = Declared module; ND = No declared module; MX= México

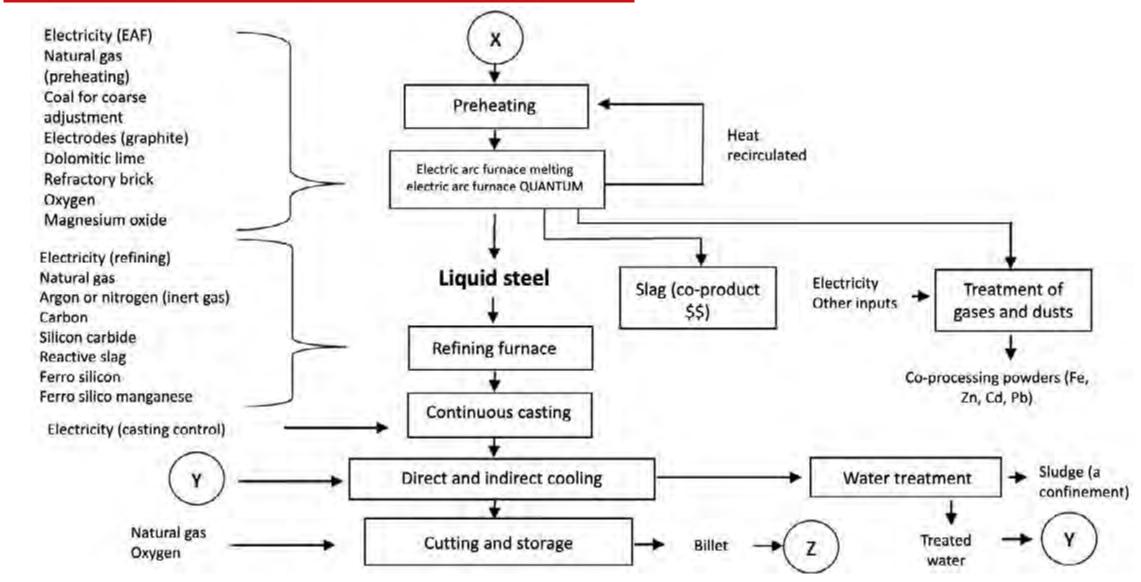
(i) Table 7. Description of the modules included in this DAP.

5.3 Description of information modules

(i) Table 8. Description of information modules included in this EPD.



5.4 Description of the manufacturing process


The manufacturing process is described in Figure 1

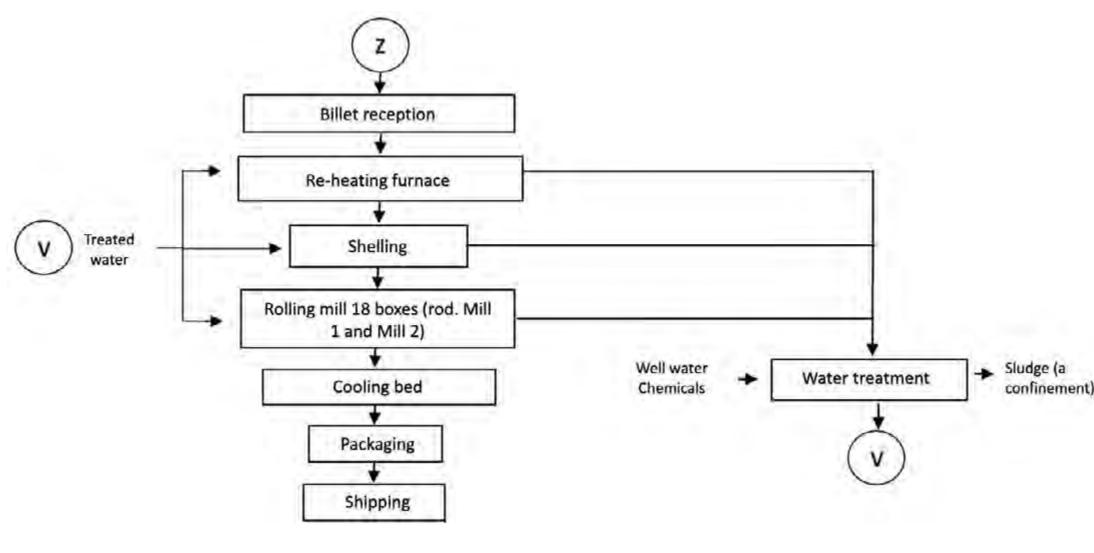
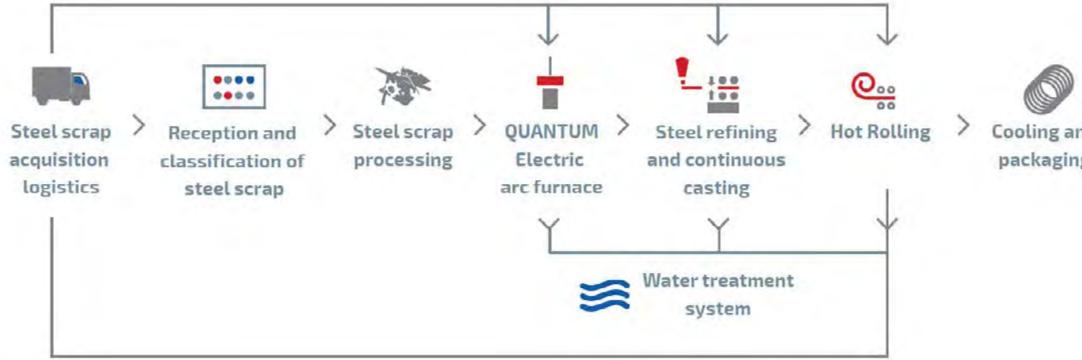
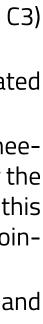



Figure 3. Flow diagram of the rolling mill for the manufacture of steel rod from scrap by T A 2000.

Diagram of the process that was registered in the 2017 life cycle analysis (this diagram is focused on mill 2) but was contemplated for both mills.

The difference is that M1 does not have water treatment (well water without the addition of chemicals), we do not have a dehuller, M1 consists of 15 boxes = 19 lamination passes (Reversible trio mill with 5 passes + 2 ring cantilever modules in cantilever = 2 passes + Intermediate Mill 6 boxes = 6 passes + Finishing Mill 6 boxes = 6 Passes), total 19 passes.

5.5 Assumptions


The assumptions related to the steel wire rod manufacturing process are presented below.

• The scenarios and distances associated with modules C1) Deconstruction – demolition, C2) Transport, C3) Waste processing, C4) Disposal and D) Potential for reuse, recycling or energy recovery in the future.

• According to the Latin American Steel Association (ALACERO, 2022), in Mexico, 98% of the steel generated during the demolition of construction buildings is recycled, and only 2% reaches the landfill.

• On the other hand, according to Javeriana University (Pontificia Universidad Javeriana, Faculty of Engineering, 2014) the fuel consumption involved during the demolition of buildings corresponds to 960 liters for the use of a backhoe, 1,590 liters for the use of a backhoe loader, 432 liters for the use of a mobile crusher. In this same process, the emissions of particulate matter associated with the demolition were obtained from Ecoinvent 3.9 "Waste concrete, not reinforced {CH}| treatment of, recycling | Cut-off, U".

• For the transport of waste, an average distance in the State was assumed, corresponding to 250.71 km and one truck (capacity greater than 32 tons).

5.6 Cut-off criteria

In the life cycle inventory, the materials necessary for the manufacture of the billet are contemplated, the All flows of fuel, energy, materials and supplies necessary for the production of the steel rebar have allocation of materials is made for 81.2% and in the case of the rod for 93.03%, while the rest in each case, been considered; materials that could be used in preventive or corrective maintenance of machinery and corresponds to the generation of by-products. The tables below present the detail. equipment were disregarded, as well as the use of uniforms and personal protective equipment or other auxiliary materials, leaving out textile impregnated with oils or plastics and the final disposal of these as hazardous waste,

5.7 Allocation

In TYASA's steel rod production process, the process begins with obtaining the scrap and its processing in the scrap yard, later it goes to the QUANTUM electric arc furnace, then to refining and continuous casting, to finally move on to hot rolling through the processes of "Steel 1" and Steel 2". These processes are developed in parallel and have the same purpose, only that they process different amounts of product. During the information gathering process, TYASA provided data for both "Steel 1" and Steel 2", as well as for "Mill 1" and "Mill 2", inputs calculated for the functional unit.

In order not to duplicate the allocation of resources, in this study allocation processes were applied for production in the two lines of the company, "Steel 1" and Steel 2".

In the case of the steel rebar, the information on the input base, transportation, emissions, residues, etc. they considered an allocation by the weight of annual production in each one. In the tables presented below, it is possible to identify the assigned percentage that was applied to the life cycle inventory to avoid double counting in the billet.

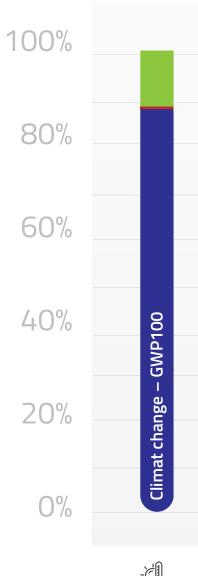
	Total production (tons)	Allocation
Billet – Steel 1	244,957.858	22%
Billet – Steel 2	860,690.110	78%
TOTAL	1,105,647.968	100%
	(j) Table 9.	Allotaction of billet for Steel 1 and 2.

By-product	Total production	Units	Allocation
Billet	1.00E+06	tons	81.18%
Mill scale	3.88E-03	tons	0.31%
Steel slag	2.17E-01	tons	17.59%
Waste Steel for control samples	1.13E-02	tons	0.92%
Total	1.08E+03	tons	100.00%
		(i) Table 11. Allocat	ion of by-products Billet

By-product	Total production	Units	Allocation			
Steel rebar	1.00E+04	tons	93,03%			
Husk sold to third parties	0,0293	tons	2,73%			
Scrap and control samples	0,0456	tons	4,25%			
Total	1.08E+04	tons	100,00%			
(i) Table 12. Allocation of by-products Steel rod.						

5.8 Time representativeness

Direct data obtained from T A 2000 S.A. de C.V. is representative for 2022.


SimaPro 9.3 and Ecoinvent 3.8 was used for Life Cycle Impact Assessment.

6.1 Potential environmental impact

All information modules are reported and valued separately. However, in the present EPD presents itself the total impact across all stage.


In the graph that appears below, you can see the contributions to the di-fferent categories of environmental impact, for each of the modules that contemplates the life cycle of the steel rebar manufactured by T A 2000, which presents the results of the extraction from raw materials to the manufacturing process.

As can be seen, the greatest environmental impacts are generated by module A1, which corresponds to the extraction of the raw material necessary for the manufacture of the product, showing a greater con-tribution in the category of formation of ozone layer depletion with a percentage of 96.05% and the formation of photochemical ozone with a contribution above 90.95%. The smallest contributions to the impact are found in module A2, which corresponds to the transportation module. Additional impact categories are discussed below.

THE INTERNATIONAL EPD® SYSTEM

dimat charge figl (0 r) 6.97 (10) 6.00 (10) 7.98 (10) 6.00 (10) 7.98 (10) 6.00 (10) 7.98 (10) 6.00 (10) 7.98 (10) 6.00 (10) <	IMPACT BASIC CATEGORY	UNIT	A1) RAW MATERIALS	A2) TRANSPORT	A3) MANUFACTURE	A1 – A3							D) Benefits and
Clinit change - for all 2 6% 1% 6% 10% 1		kg CO2 eq	6.75E+02	1.05E+01	4.00E+01	7.25E+02	Impact categories	Unit		C2) Waste	C3) Waste		charges beyond the
Climate charge - fairly binding - fairly bindin	Climat change- GWP100	%	93%	1%	6%	100%				transport	treatment	uisposai	cycling scenario
No. No. Optimized angle of the second seco		kg CO2 eq	6.85E+02	1.06E+01	1.36E+01	7.09E+02	Climate change- GWP	kg CO2 eq	1.11E+03	2.24E+01	0.00E+00	6.57E+00	2.30E+03
Limate change - Fasal N NORM NORM </td <td>Climat change - Total</td> <td>%</td> <td>96.59%</td> <td>1.49%</td> <td>1.92%</td> <td>100.00%</td> <td>%</td> <td>100%</td> <td>100%</td> <td>100%</td> <td>100%</td> <td>100%</td>	Climat change - Total	%	96.59%	1.49%	1.92%	100.00%		%	100%	100%	100%	100%	100%
s 9401 1.4% 5.5% 000% 10%<		kg CO2 eq	6.85E+02	1.06E+01	4.09E+01	7.36E+02	Climato chango, total	kg CO2 eq	1.14E+03	2.26E+01	0.00E+00	6.69E+00	2.35E+03
Climate hange - Biogenic No Observed Dode vol Dode vol </td <td>Climate change - Fossil</td> <td>%</td> <td>93.01%</td> <td>1.43%</td> <td>5.56%</td> <td>100.00%</td> <td>Climate change- total</td> <td>%</td> <td>100%</td> <td>100%</td> <td>100%</td> <td>100%</td> <td>100%</td>	Climate change - Fossil	%	93.01%	1.43%	5.56%	100.00%	Climate change- total	%	100%	100%	100%	100%	100%
Climate change - Biogenic x 0.000, 100.000, </td <td></td> <td>kg CO2 eq</td> <td>0.00E+00</td> <td>5.69E-03</td> <td>0.00E+00</td> <td>5.69E-03</td> <td>Climate change- Fuel</td> <td>kg CO2 eq</td> <td>1.13E+03</td> <td>2.26E+01</td> <td>0.00E+00</td> <td>6.61E+00</td> <td>2.34E+03</td>		kg CO2 eq	0.00E+00	5.69E-03	0.00E+00	5.69E-03	Climate change- Fuel	kg CO2 eq	1.13E+03	2.26E+01	0.00E+00	6.61E+00	2.34E+03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Climate change - Biogenic	%	0.00%	100.00%	0.00%	100.00%		%	100%	100%	100%	100%	100%
and LU hange x $83.X$ $10.x$ $15.x$ 100.0 10.0 x 100.0 100	Climate change - Land use	kg CO2 eq	3.77E-01	4.38E-03	6.90E-02		Climate change- Biogenic	kg CO2 eq	2.37E+00	1.69E-02	0.00E+00	7.09E-02	5.62E+00
kg CF11 eq 1.09E-04 2.29E-06 1.16E-05 1.13E-04 g C02 eq 2.86C-03 2.98E-03 0.00E-00 3.78E-03	6	%						%	100%	100%	100%	100%	100%
Ozora depletion x 9652% 203% 1.46% 1000% x 100%		kg CFC11 ea						kg CO2 eq	2.98E-01	8.78E-03	0.00E+00	3.79E-03	2.34E+00
Arddfication mol H+eq 3.83E+00 5.36E-02 2.24E-01 4.11E+00 % 9.93.2% 1.30% 5.45% 100.00% % 1.00% </td <td>Ozone depletion</td> <td>%</td> <td></td> <td></td> <td></td> <td></td> <td>LU change</td> <td>%</td> <td>100%</td> <td>100%</td> <td>100%</td> <td>100%</td> <td>100%</td>	Ozone depletion	%					LU change	%	100%	100%	100%	100%	100%
Reduction x 93.24% 1.30% 5.45% 1000.05% x 100% 100%		mol H+ eq						J	2.05E-03	5.31E-06	0.00E+00	3.91E-07	2.50E-04
Eutrophication, freshwater x 88842x 0.52x 11.07x 10000x kg P04 eq 4.17E-01 2.44E-03 5.21E-02 4.1E-01 x 884.2x 0.52x 11.07x 100.00x kg P04 eq 4.17E-01 2.44E-03 5.21E-02 4.1E-01 x 884.2x 0.52x 11.07x 100.00x kg N eq 1.10E+00 1.81E-02 4.45E-02 1.16E+00 x 94.59x 1.57x 3.84x 100.00x kg N eq 1.18E+01 1.98E-01 1.24E-01 x 94.77x 1.57x 3.84x 100.00x kg Neq 1.18E+01 1.98E-01 1.24E-01 1.24E+01 x 94.77x 1.57x 3.84x 100.00x kg P04 eq 1.70E+00 1.64E-02 0.00E+00 6.9E-02 3.66E+1 kg NMVOC eq 3.39E+01 5.54E-02 1.18E+04 1.52E+04 1.58E+04 1.00x 100x 100x 100x 100x 100x	Acidification	%	93.24%	1.30%	5.45%	100.00%		%	100%	100%	100%	100%	100%
kg 98.42% 0.52% 11.07% 100.00% kg kg 100%		Kg PO eq	1.36E-01	7.94E-04	1.70E-02	1.53E-01	Acidification	mol H+ eq	1.43E+01	7.36E-02	0.00E+00	2.14E-02	1.18E+01
Eutrophication, freshwater χ 88842x 0.52x 11.07x 100.00x $kg N eq$ 11.0E+00 1.81E-02 4.45E-02 1.16E+00 χ $VOC eq$	Eutrophication, freshwater	%	88.42%	0.52%	11.07%	100.00%		%	100%	100%	100%	100%	100%
Ludopindador, resintad 2 \Re 684.2% 0.52% 11.07% 100.0% fittee description of the constraint of the co	Future phinetics fur should be 2	kg PO4 eq	4.17E-01	2.44E-03	5.21E-02	4.1E-01	Dhotochomical ozono forma		7.04F-02	1.70F-03	0.00F+00	1.82E-03	7.37E-01
Eutrophication, marine kg N eq 1.10E+00 1.81E-02 4.45E-02 1.16E+00 kg N eq 1.10E+00 1.81E-02 4.45E-02 1.16E+00 $kg P q$ 2.16E-01 5.22E-03 0.00E+00 5.58E-03 2.26E+01 Eutrophication, terrestrial kg N eq 1.18E+01 1.98E+01 4.52E-01 1.24E+01 $kg P q$ 2.16E-01 5.22E-03 0.00E+00 6.19E-03 3.66E+01 Photochemical ozone formition MS MVOC eq 3.39E+01 5.64E-02 1.31E-01 3.58E+00 1.68E+01 1.79E-01 0.00E+00 6.9E-03 3.66E+02 Abiotic depletion - fossil resources MJ 1.11E+04 1.57K 3.667K 100.00K 1.88E+01 1.79E-01 0.00E+00 6.94E-02 3.18E+01 Robitic depletion - fossil resources MJ 1.11E+04 1.57K+02 4.89E+02 1.18E+04 1.90K+0 6.95E-02 0.00E+00 6.94E-02 3.88E+00 Abiotic depletion - non-fossil fessil resources MJ 1.22E+05 3.66E+01 1.00K+0 1.00K+0 100	Eutrophication, freshwater 2	%	88.42%	0.52%	11.07%	100.00%		VOC eq					
kg Neq 1.57% 3.84% 100.00% kg Neq 1.18E+01 1.98E-01 4.52E-01 1.24E+01 % 94.77% 1.57% 3.84% 100.00% Photochemical ozone formation % 94.77% 1.57% 3.84% 100.00% Photochemical ozone formation % 94.77% 5.54E-02 1.31E-01 3.58E+00 1.8E+04 1.79E-01 0.00E+00 6.94E-02 3.18E+01 Abiotic depletion - fossil resources MJ 1.11E+04 1.57K+02 4.89E+02 1.18E+04 1.98E+01 1.98E-01 1.00% 100% 6.94E-02 3.18E+01 Abiotic depletion - fossil resources MJ 1.11E+04 1.57K+02 4.89E+02 1.18E+04 1.000% Abiotic depletion - non-fossil resources MJ 1.11E+04 1.57K+02 4.89E+02 1.18E+04 2.36E+03 3.66E+02 0.00E+00 6.94E-02 0.01E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+02 0.00E+00 1.00E+01 0.00E+00 1.00E+01	Eutrophication, marine	kg N eq	1.10E+00	1.81E-02	4.45E-02	1.16E+00		%					100%
Eutrophication, terrestrial kg Neq 1.18E+01 1.98E-01 1.24E+01 1.24E+01 kg P04 eq 1.70E+00 1.64E-02 0.00E+00 6.19E-03 3.64E+02 Photochemical ozone formation kg NMVOc eq 3.39E+01 5.64E-02 1.31E-01 3.58E+00 kg N0 1.00% 1.00% 1.00% 1.00% 0.00E+00 6.9E-02 3.18E+01 Abiotic depletion - fossil resources MJ 1.11E+04 1.57E+02 4.89E+02 1.18E+04 1.000% Abiotic depletion - non- fossil resources Mg S b eq 2.16E-03 3.63E-05 1.58E+04 2.36E-03 1.30E+02 1.8E+04 Mol Net 7.8E+00 6.9E+02 0.0E+02 0.0E+02 0.3E+02 3.18E+04 Abiotic depletion - non- fossil resources Mg S b eq 2.16E+03 3.63E+01 1.57K 3.64E+01 1.30E+02 3.0E+02 0.0E+02 0.0E+02 0.0E+02 0.10E+02 0.10E+02 Mater scarcity Mg S b eq 1.02K+01 1.02K+01 3.63E+02 0.0E+02 0.0E+02 0.0DE+00 0.0DE+00 0.		%	94.59%	1.57%	3.84%	100.00%	Eutrophication, freshwater 1	kg P eq					2.26E+00
Matrix 94.77% 1.57% 3.84% 100.00% Photochemical ozone formation kg NMVOC eq 3.39E+01 5.64E-02 1.31E-01 3.58E+00 Motochemical ozone formation kg NMVOC eq 3.39E+01 5.64E-02 1.31E-01 3.58E+00 Motochemical ozone formation kg NM 94.75% 1.58% 3.67% 100.00% Abiotic depletion - fossil resources MJ 1.11E+04 1.57E+02 4.89E+02 1.18E+04 Nobici depletion - fossil resources MJ 1.11E+04 1.57E+02 4.89E+02 1.18E+04 Nobici depletion - fossil resources MJ 1.11E+04 1.57E+02 4.89E+02 1.18E+04 Motochepletion - fossil resources Mg Sb eq 2.16E-03 3.63E+05 1.58E+04 2.36E+03 Mater use MB depriv. 1.02E+02 5.42E-01 2.72E+01 1.00E+02 MI 1.22E+03 5.37E-05 0.00E+00 1.00% 1.00% Mater scarcity M3 depriv. 2.36E+00 7.03E+02 1.04E+01 1.28E+01 1.40E+01 <		kg N eq	1.18E+01	1.98E-01	4.52E-01	1.24E+01	Eutrophication, freshwater 2	%					100%
Photochemical ozone formation kg NMVOC eq 3.39E+01 5.64E-02 1.31E-01 3.58E+00 Min 94.75% 1.58% 3.67% 100.00% Abiotic depletion - fossil resources Mj 1.11E+04 1.57E+02 4.89E+02 1.18E+04 Min 94.52% 1.33% 4.15% 100.00% Abiotic depletion - non- fossil resources kg Sb eq 2.16E-03 3.63E-05 1.58E-04 2.36E-03 Mater use mg depriv. 91.77% 1.54% 6.70% 100.00% Water scarcity mg depriv. 2.36E+00 7.03E-02 1.04E+01 1.28E+01 1.29E+01 1.00% 100%	Eutrophication, terrestrial	%	94.77%	1.57%	3.84%	100.00%		kg PO4 eq					3.66E+00
tion \aleph_{g} Need $1.58c+01$ 1.75 ± 01 0.00 ± 00 0.94 ± 02 3.16 ± 01 Abiotic depletion - fossil resources MJ 1.11 ± 04 1.57 ± 02 4.89 ± 02 1.18 ± 04 Abiotic depletion - fossil resources MJ 1.11 ± 04 1.57 ± 02 4.89 ± 02 1.18 ± 04 $mOl Neq$ 7.84 ± 00 6.95 ± 02 0.00 ± 00 1.91 ± 02 1.00% 100%		kg NMVOC eq	3.39E+01	5.64E-02	1.31E-01	3.58E+00		%					100%
Abiotic depletion - fossil resources MJ 1.11E+04 1.57E+02 4.89E+02 1.18E+04 1.8E+04 mol N eq 7.84E+00 6.95E-02 0.00E+00 1.81E-02 1.01E+02 Abiotic depletion - non-fossil resources kg Sb eq 2.16E-03 3.63E-05 1.58E-04 2.36E-03 Abiotic depletion - fossil resources MJ 1.23E+05 3.60E+02 0.00E+00 1.000		%	94.75%	1.58%	3.67%	100.00%	Eutrophication, marine	kg N eq ∞					
resources $\%$ 94.52% 1.33% 4.15% 100.00% μ	I	MJ	1.11E+04	1.57E+02	4.89E+02	1.18E+04							
Abiotic depletion - non-fossil resources kg Sb eq 2.16E-03 $3.63E-05$ $1.58E-04$ $2.36E-03$ Model fossil resources MJ $1.23E+05$ $3.60E+02$ $0.00E+00$ $4.07E+01$ $3.21E+01$ Water use m3 depriv. $1.02E+02$ $5.42E-01$ $2.72E+01$ $1.30E+02$ MJ $1.22E-03$ $5.37E-05$ $0.00E+00$ $4.07E+01$ $3.21E+01$ Water scarcity m3 depriv. $2.36E+00$ 0.42% 20.95% 100.0% 100.0% MJ $1.22E-03$ $5.37E-05$ $0.00E+00$ $1.95E-05$ $1.01E+02$ Water scarcity m3 depriv. $2.36E+00$ $7.03E-02$ $1.04E+01$ $1.28E+01$ $1.28E+01$ $1.28E+01$		%					Eutrophication, terrestrial						
fossil resources M Mile Mile </td <td rowspan="2">•</td> <td>kg Sb eq</td> <td></td> <td></td> <td></td> <td></td> <td rowspan="2">•</td> <td>/о N/П</td> <td></td> <td></td> <td></td> <td></td> <td>3.21E+04</td>	•	kg Sb eq					•	/о N/П					3.21E+04
Mater use m3 depriv. 1.02E+02 5.42E-01 2.72E+01 1.30E+02 Abiotic depletion - non-fossil resources kg Sb eq 1.22E-03 5.37E-05 0.00E+00 1.95E-05 1.01E-05 Water scarcity m3 depriv. 2.36E+00 7.03E-02 1.04E+01 1.28E+01 M3 depriv. 1.40E+01 6.52E-01 0.00E+00 3.37E-01 1.84E+01		%						را ۲۰ ر					100%
Water use Mater scarcity Mater scarcity Mater scarcity Mater deprivation potential Mater de	Water use	m3 depriv.					Abiotic depletion - non-	/″ kg Sh en					1.01E-02
Mater scarcity m3 depriv. 2.36E+00 7.03E-02 1.04E+01 1.28E+01 Water deprivation potential m3 depriv. 1.40E+01 6.52E-01 0.00E+00 3.37E-01 1.84E+		%					•	%					100%
Water scarcity Water deprivation potential	Water scarcity	m3 depriv.					01 Water deprivation potential	m3 depriv					1.84E+04
		%	18.44%	0.55%	81.01%	100.00%		%	100%	100%	100%	100%	100%

(i) Table 14. A1-A3 Basic impact categories results

LATIN AMERICA EPD®

(i) Table 15. A1-A3 Basic impact categories results

Use of resources parameters	Unit	A1) Raw materials	A2) Transport	A3) Manu- facture	A1 – A3
Use of renewable primary ener- gy excluding renewable primary energy resources used as feed- stock	MJ	4.71E+02	1.81E+00	4.50E+02	9.22E+02
Use of renewable primary ener- gy as raw material	MJ	9.05E+01	2.62E-01	8.23E+00	9.90E+01
Total use of renewable primary energy (primary energy and pri- mary energy resources used as feedstock)	MJ	4.71E+02	1.81E+00	4.50E+02	9.22E+02
Non-renewable primary energy use excluding renewable primary energy resources used as feed- stock	MJ	1.20E+04	1.66E+02	5.20E+02	1.26E+04
Use of non-renewable primary energy as raw material	MJ	1.15E+04	1.65E+01	4.68E+02	1.21E+04
Total use of non-renewable pri- mary energy (primary energy and primary energy resources used as raw materials)	MJ	1.20E+04	1.66E+02	5.20E+02	1.26E+04
Use of secondary materials	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of secondary renewable fu- els	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of secondary non-renew- MJ able fuels		0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of fresh water	m³	2.86E+00	1.79E-02	7.17E-01	3.59E+00

(i) Table 16. A1-A3 use of resources parameters.

THE INTERNATIONAL EPD® SYSTEM

D) Benefits and C2) Waste C3) Waste C4) Waste charges beyond the C1) Demolise of resources parameters Unit transport treatment disposal system boundary, tion recycling scenario se of renewable primary enerexcluding renewable primary MJ 3.98E+00 0.00E+00 1.74E+03 2.49E+02 1.81E+00 ergy resources used as feedock se of renewable primary ener-0.00E+00 MJ 2.91E+01 6.39E-01 2.43E-01 3.02E+02 as raw material tal use of renewable primary ergy (primary energy and pri-MJ 3.98E+00 0.00E+00 1.81E+00 1.74E+03 2.49E+02 ary energy resources used as edstock) on-renewable primary energy e excluding renewable pri-MJ 3.83E+02 0.00E+00 3.43E+04 1.30E+05 4.32E+01 ary energy resources used as edstock se of non-renewable primary 0.00E+00 3.78E+02 MJ 1.30E+05 4.17E+01 3.25E+04 ergy as raw material tal use of non-renewable priary energy (primary energy MJ 3.83E+02 0.00E+00 3.43E+04 4.32E+01 1.30E+05 d primary energy resources ed as raw materials) 0.00E+00 se of secondary materials 0.00E+00 0.00E+00 0.00E+00 kg 0.00E+00 se of secondary renewable fu-MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 se of secondary non-renew-MJ 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 le fuels se of fresh water 9.70E-01 4.51E-02 0.00E+00 2.33E-02 2.54E+01 m³

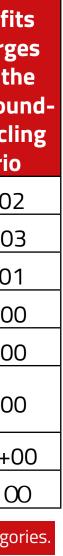
(i) Table 17. C1-C4, D use of resources parameters.

6.3 Other indicators describing waste categories

Environmental indicators describing waste generation were obtained from LCI except for background information which has been calculated using EDIP 2003 method (Hauschild and Potting, 2005). Environmental parameters describing waste generation are provided below:

Output parameter	Unit	Total	1) Raw materials supply	A2) Transpor- tation	A3) Manufac- turing
Hazardous waste	kg	1.97E-02	4.14E-04	4.76E-03	2.49E-02
Non hazardous waste	kg	3.27E+02	7.98E+00	4.99E+00	3.40E+02
Radioactive waste*	kg	4.84E-02	1.02E-02	1.18E-03	5.06E-02
Components for reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for recycling	kg	9.08E-01	0.0E+00	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported electricity	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported heat	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Table 18. A1-A3 Other indicators describing waste categories.


Output parameter	Unit	C1) Demoli- tion	C2) Waste transport	C3) Waste treat- ment	C4) Waste disposal	D) Benefi and charg beyond th system bou ary, recycl scenaric
Hazardous waste	kg	8.85E-04	0.00E+00	4.21E-05	3.26E-01	7.19E-02
Non hazardous waste	kg	3.33E+01	0.00E+00	4.04E+01	3.08E+01	1.13E+0
Radioactive waste*	kg	2.38E-03	0.00E+00	1.90E-04	8.73E-01	1.26E-0
Components for reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
Materials for energy reco- very	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
Exported electricity	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
Exported heat	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+C

(i) Table 19. C1-C4, D Other indicators describing waste categories

*No radioactive waste is produced during T A 2000 operations.

**The column "A3) Manufacturing direct and indirect, refers to direct data and background data regarding production of ancillary materials and other processes outside T A 2000's facilities".

6.4 Additional environmental information

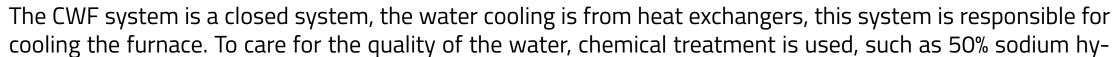
In Steelworks II the production of the billet is carried out, the water plant is in charge of cooling the furnace sy tem and other equipment that is important for the manufacture of the billet. There are two types of syster the open system that is from cooling towers where the water quality is a combination of soft water and ra water, and the closed system where the water is cooled from heat exchangers. considering only soft water preserve the quality of the water and the equipment, we take care of extremely important factors such as rrosion, scale and microbiological presence.

ICW system

The ICW system or also known as 8211 is an open system in which the water cooling is from cooling towe the equipment that this system provides cooling is to hydraulic power plants and compressors. To care for the quality of the water, chemical treatment is used, such as 98% sulfuric acid and sodium hypochlorite, a phosphate-based corrosion inhibitor and a polymer-based scale inhibitor.

CWS system

droxide and a nitrite-based corrosion inhibitor.


sys- ms, raw r. To	The CWS system or also known as 8232 is an open system which cools the water from a cooling tower, this system cools the raw material that is the billet. To care for the quality of the water, chemical treatment is used, such as 98% sulfuric acid and sodium hypochlorite, a phosphate-based corrosion inhibitor and a polymer-based scale inhibitor.
CO-	The CWC system is a closed system, the cooling of the water is from heat exchangers, this system cools the casting molds, rotary valves and rollers. To care for the quality of the water, chemical treatment is used, such as 50% sodium hydroxide and a nitrite-based corrosion inhibitor.
ers, the	WFC system The CWF system is a closed system, the water cooling is from heat exchangers, this system is responsible for

7. VERIFICATION AND REGISTRATION

	CEN STANDARD EN
Programme	International EPD® System WWW.environdec.com LATIN AMERICA EPD® DAP registrada en el programa regior EPD Latin America WWW.epdlatinamerica.com
Programme operator	EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden EPD Latin America Chile: Alonso de Ercilla 2996, Ñuñoa, Santiago Chile. Mexico: Bosques De Bohemia 2 No. 9, Bosques del Lago. C
EPD registration number:	S-P-00704
Date of validity:	2028-07-12
Revision date:	2023-07-13
Date of publication (issue):	2018-08-23
Reference year of data:	2022
Geographical scope:	Mexico
Production Plant:	Carretera Federal México-Veracruz Km. 321, s/n, interior 2
Product category rules:	PCR 2019:14 construction products, Version 1.11 (EN1580
PCR review was conducted by:	Martin Erlandsson, IVL Swedish Environmental Research II
Independent verification of the declaration data, ac-	EPD process certification (Internal)
cording to ISO 14025:2006.	X EPD verification (External)
Third-party verifier: Approved by:	Francisco J. Campo Approved EPD verifier f.campo@ik-ingenieria.com The International EPD® Systemz
Procedure for follow-up of data during EPD validity involves third-party veri¬fier:	Yes X No

N 15804 SERVED AS THE CORE PCR

onal/hub:

Cuautitlan Izcalli, Estado de México, México.

2, Ixtaczoquitlán, Veracruz, C.P. 94450 804:2012+A2:2019)

Institute, martin.erlandsson@ivl.se

19 | Environmental Product Declaration

8. CERTIFICATIONS

ISO 9001:2015

ISO 14001

We have an Implementation Plan for the Environmental Management System for ISO 14001 with a progress of 45%, led by the Management Systems Department, according to the progress of the project, we are planning the certification in June 2024.

20 | Environmental Product Declaration

9. CONTACT INFORMATION

EPD OWNER

LCA AUTOR

PROGRAMME OPERATOR

TA 2000 S.A. de C.V. **ORIZABA:** Carretera Federal México-Veracruz Km. 321, s/n, interior 2, lxtaczoquitlán, Veracruz, C.P. 94450 https://tyasa.com/ Contact: Guadalupe Román Hernández Center for Life Cycle Assessment and Sustainable Design – CADIS

Bosques De Bohemia 2 No. 9, Bosques del Lago. Cuautitlan Izcalli, Estado de México, México. C.P. 54766 www.centroacv.mx

LCA Study: Life Cycle Assessment (LCA) methodology of Expandable Polystyrene (EPS) insulation board

LCA Authors: Luque Claudia, Ochoa Gabriel, Sojo Amalia.

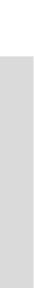
Contact person: Juan Pablo Chargoy jpchargoy@centroacv.mx EPD International AB

Box 210 60, SE-100 31, Stockholm, Sweden. www.environdec.com

info@environdec.com

EPD registered through the fully aligned regional programme/hub:

Chile: Alonso de Ercilla 2996, Ñuñoa, Santiago Chile.


México:

Av. Convento de Actopan 24 Int. 7A, Colonia Jardines de Santa Mónica, Tlalnepantla de Baz, Estado de México, México, C.P. 54050





10. REFERENCES

ALACERO. (2022). sociación Latinoamericana del Acero (ALACERO) El acero es el úni material que puede ser reciclado ilimitadamente al 100%. . Obtenido de https://ww alacero.org/noticias/el-acero-es-el-unico-material-que-puede-ser-reciclado-ilimitad mente-al-100

BIEE. (2023). Base de Indicadores de Eficiencia Energética de México. Obtenido de https www.biee-conuee.net/site/index.php

CANACERO. (2021). Cámara Nacional de la Industria del Hierro y del Acero (CANACERO Obtenido de Radiografía de la industria del acero en México 2021: https://www.canacei org.mx/aceroenmexico/descargas/Radiografia_de_la_Industria_del_Acero_en_Mex co_2021.pdf

Concretos Reciclados. (2021). Concretos Reciclados Sitio Web. Obtenido de http://ww concretosreciclados.com.mx

ECODES. (2010). ECODES. Obtenido de https://archivo.ecodes.org/web/noticias/p ra-que-sirve-reciclar-acero-y-como-hacerlo

Econinvent 3.9. (2022). Base de datos.

EPD. (2021). EPD System . Obtenido de https://www.environdec.com/home

IMNC. (2008). NMX-SAA-14040-IMNC Gestión ambiental - Análisis de ciclo de vida - Pri cipios y marco de referencia. México, D.F.: IMNC.

IMNC. (2008). NMX-SAA-14044-IMNC. Mexico D.F.: Instituto mexicano de normalizació y certificación, A.C.

ISO 14025:2006(es) Etiquetas y declaraciones ambientales — Declaraciones ambient les tipo III — Principios y procedimientos

Maya Rojas, O. M. (2019). Análisis técnico económico para el uso de alternativas de d molición en el edificio no. 19 de la PUJ.

Norma Europea Sostenibilidad en la Construcción EN 15804:2012+A2:2019. (2019). No ma Europea Sostenibilidad en la Construcción.

PCR 2019:14 Construction Products V 1.11. (05 de 02 de 2021). EPD System. Obtenido https://www.environdec.com/

Pre-Consultants. (2010). Data base manual. Method library.

SEMARNAT. (2020). Diagnostico Básico para la Gestión Integral de Residuos. México.

	T A 2000. (2023). Información proporcionada por el equipo técnico.
	UNESID. (2021). Unión de Empresas Siderúrgicas . Obtenido de https://unesid.org/cifras-clave/
со	Boulay AM, Bare J, BeniniL, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez
w.	M, Valerie-Pastor A, Ridoutt B, Oki T, Worbe S, P¬ster S (2018) The WULCA consensus characte-
a-	rization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment. Volume
://	23, Issue 2, pp 368–378. https://doi.org/10.1007/s11367-017-1333-8.
	EN 15804:2012+A1:2013 (Sustainability of construction works - Environmental product decla-
0).	rations - Core rules for the product category of construction products).
ro. xi-	EPD International (2017) General Programme Instructions for the International EPD® System. Version 3.0, dated 2017-12-11. www.environdec.com.
w.	Frischknecht R, Jungbluth N, Althaus HJ, Bauer C, Doka G, Dones R, Hischier R, Hellweg S, Hum- bert S, Köllner T, Loerincik Y, Margni M, Nemecek T (2007) Implementation of Life Cycle Impact Assessment Methods Data v2.0. ecoinvent report No. 3. Swiss Centre for Life Cycle Inventories,
a-	Dübendorf.
	Guinee JB, Marieke G, Heijungs R, Huppes G, Kleijn R, van Oers L, Wegener S, Suh S,Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2001). Handbook on Life Cycle Assessment, Opera- tional guide to the ISO standards Volume 1, 2a, 2b and 3. Springer Netherlands. DOI 10.1007/0- 306-48055-7. Series ISSN 1389-6970
n-	Hauschild M, Potting J (2005) Spatial differentiation in Life Cycle impact assessment - The EDIP2003 methodology. Institute for Product Development Technical University of Denmark.
ón	Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and
:a-	endpoint level. International Journal on Life Cycle Assessment Volume 22 Issue 2. pp 138-147. https://doi.org/10.1007/s11367-016-1246-y
e-	UN (2015) Central Product Classification (CPC) Version 2.1. Department of Economic and Social Affairs. Statistics Division. United Nations, New York.
or-	
de	Díaz Leandra, Luque Claudia, García Rene (2023). Life Cycle Assessment (LCA) methodology of steel wire rod manufactured from steel scrap. México
de	Wegener AS, van Oers L, Guinée JB, Struijs J, Huijbregts MAJ (2008) Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of The Total Environment. Volume 390, Issue 1. Pages 227-240. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2007.09.040.

From 2017 up to the present, there have been no technological changes in the manufacturing of steel rebars. However, there have been shifts in suppliers and the installation of a larger number of energy and fuel consumption meters. This has enabled the current report to include more precise data and to rely on fewer assumptions regarding the information. Similarly, the same applies to raw materials, as there is an accounting system in place that tracks the quantities of materials purchased.

The primary changes are linked to the update of the Product Category Rule (PCR) and the Intergovernmental Panel on Climate Change (IPCC) emission factor.

