

Environmental Product Declaration

In accordance with ISO 14025 and Product Category Rules for Absorbent Hygiene Products

Baby diapers Libero assortment DryKids

EPD[®]

Date of publication: Valid until: PCR reference:

Registration number: Revision date: Version: Programme: Programme operator: 2017-10-17 2025-10-11 CPC division 32193 Absorbent Hygiene Products PCR 2011:14 V. 3.01 S-P-00646 2024-03-15 6 International EPD® System EPD International AB

Essity is a leading global hygiene and health company

Essity is a global, leading hygiene and health company. We are dedicated to improving well-being through our products and services.

Sales are conducted in approximately 150 countries under the leading global brands TENA and Tork, and other strong brands, such as Actimove, JOBST, Knix, Leukoplast, Libero, Libresse, Lotus, Modibodi, Nosotras, Saba, Tempo, TOM Organic, Vinda and Zewa.

Essity has about 48,000 employees. Net sales in 2022 amounted to approximately SEK 156bn (EUR 15bn).

The company's headquarters is located in Stockholm, Sweden, and Essity is listed on Nasdaq Stockholm. Essity breaks barriers to well-being and contributes to a healthy, sustainable and circular society. More information at <u>www.essity.com</u>.

TENA is a part of Essity

Through our TENA brand, we offer a broad range of incontinence products and services. The clear purpose of this offering is to care for people, improve their quality of life, and help them live with dignity and confidence.

For our institutional customers, such as nursing homes, it also means reducing costs while increasing efficiency and quality of care. This is done through a combination of high-quality products and qualified advisory services that simplify handling procedures for care providers.

Since incontinence is often surrounded by a social taboo, enhancing quality of life also means promoting an open dialogue to break down the stigma. So, in addition to providing products that improve health and hygiene, we're working hard to raise awareness, provide training and global forums, and drive high-level dialogues around the world.

At TENA we're continually innovating new products that are increasingly discrete, comfortable, effective, and easy to use, while also reducing our carbon footprint. To make a better mark – For a more positive impact on society and the planet.

	TENA assortment
TENA Female Liners & Pads	A drier, safer, and more comfortable product than ordinary menstrual towels. The liners and pads give triple protection against leaks, odour, and moisture. The products are body shaped for comfort, protection, and discretion.
TENA Men	TENA Men are discreet and safe protection for men who experience urine leakage. Specially developed for men who want discretion and to continue to live an active life.
TENA Pants & Underwear	Close body fit for security and confidence. High performance products that Absorbent disposable pant for users experiencing incontinence. High performance products, that are as easy to put on/take off as underwear. Stretchy, soft and textile-like materials offer users a body-close fit for healthy skin, high leakage security, confidence, and comfort during use. The products are available in a range of sizes and absorbency levels and as unisex or gender specific products and are suitable for all types of incontinence. Dermatologically tested and/or Dermatologically Approved by Skin Health Alliance.
TENA Flex	A belted product with elastic belt for easy & ergonomic changes for the carer and high security for the user. TENA Flex provides ease of use and best fit; adjusts to different body shapes, securing comfortable fit, skin health and superior leakage security. The products are available in a range of sizes and absorbency levels and are suitable for all types of incontinence. Dermatologically tested and/or Dermatologically Approved by Skin Health Alliance.
TENA Comfort TENA Rectangular	All-in-one incontinence products designed to provide protection for healthy skin and high leakage security. The products are available in a broad range of sizes and absorbency levels ensuring a comfortable adjustable fit and are suitable for all types of incontinence. Dermatologically tested and/or Dermatologically Approved by Skin Health Alliance.
TENA Slip	All-in-one incontinence products designed to provide protection for healthy skin and high leakage security. The products are available in a range of sizes and absorbency levels and are suitable for all types of incontinence. Dermatologically tested and/or Dermatologically Approved by Skin Health Alliance.
TENA Fix	A seamless, washable and reusable fixation pant supporting leakage security. Ensures that TENA Comfort and TENA Rectangular pads stay securely in place. Soft and elastic material provides comfort. Can be washed several times without losing shape.
TENA Bed	Provides protection for beds and chairs against accidental urine loss and during hygiene procedures. Dermatologically tested so it is gentle to the skin. Available in a range of sizes and absorbency levels.
	Baby diaper assortment
Libero assortment	The Libero assortment fulfils the demands for premium-brand baby diaper and the diapers have an absorption capacity/function that cover different steps of the baby's diaper needs. The diapers consist of an absorbent core, anti-leakage barrier, fastening system, and a back sheet. The assortment is uni-sex.
DryKids	DryKids assortment of breathable diapers for children quickly absorb urine and help to keep the child's skin dry and healthy.

dec t	This nvironmental laration covers he following pero products	Article number	Dimension (mm)	Weight ±5% (g)	License number
1	Libero Newborn 1	8417 6349^	210 x 350	15	3023 0023 / 30230032
2	Libero Newborn 2	8419 6332^	210 x 390	20	3023 0023
3	Libero Comfort 3	8302 84005 8190^	220 x 445	23	3023 0023
4	Libero Comfort 4	8303 84010 6319^ 8198^	220 x 480	28	3023 0023
5	Libero Comfort 5	8305 84015 5536^ 8206^	220 x 480	28	3023 0023
6	Libero Comfort 6	8306 84021 8208^	235 x 520	31	3023 0023
7	Libero Comfort 7	8307 84026 8210^	235 x 560	34	3023 0023
8	Libero UP&GO 5	8225	476 x 365	32	3023 0038
9	Libero UP&GO 6	8232	516 x 390	36	3023 0038
10	Libero UP&GO 7	8239	536 x 410	38	3023 0038
11	Libero UP&GO 8	8242	536 x 410	42	3023 0038
12	Libero Touch Premature	7976	320 x 173	13	3023 0032
13	Libero Sleep Tight 9	8384 8385	536 x 284	46	5023 0001
14	Libero Sleep Tight 10	8386 8387	588 x 330	51	5023 0001

dec	This environmental declaration covers the Article following number DryKids products		Dimension (mm)	Weight ±5% (g)
15	Dry Kids XL	5369	520 x 249	33
16	Dry Kids XL+	5619	560 x 245	37

^ Article no longer produced

The way we work

We assess the environmental impact of our products using a full life cycle approach, beginning with product design, through manufacturing, transport, use, and disposal.

RESPONSIBLE SOURCING involves seeking high-quality raw materials that are safe from both a social and environmental perspective. The company's suppliers adhere to strict demands in Essity's Global Supplier Standard

RESOURCE EFFICIENT

PRODUCTION is efficient use of resources, and the continuous reduction of energy and waste. Essity's objective is to develop products and services for a sustainable and circular society. The TENA production units are working with the management systems ISO 13485, ISO 14001 and ISO 18001.

Global Supplier Standard € esity

SUSTAINABLE SOLUTIONS are safe and with the ambition to be environmentally sound innovations for hygiene products and services, based on customer and consumer insights, enabling us to meet their needs in daily life.

Life cycle management of Essity products

The information presented in an environmental product declaration is obtained from a Life Cycle Assessment (LCA), which is a study of the potential environmental impact of a product throughout its life cycle, including production of raw materials and products, use of the product, after use processes, and transports.

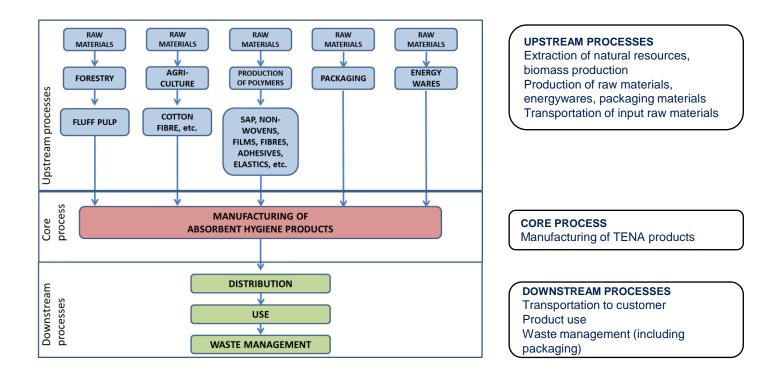
Environmental achievements

The following carbon footprint reductions for different TENA product groups have been achieved during the years 2008 to 2022 by working in a structured way to continually improve performance and efficiency.

Product	Carbon footprint reduction (g CO ₂ -eq/product)
TENA Flex	- 22 %
TENA Pads & Liners	- 43 %
TENA Men	- 26 %
TENA Pants & Underwear	- 41 %
TENA Slip	- 32 %
TENA Comfort	- 21 %
TENA Bed	- 24 %

The carbon footprint reductions in Europe between 2008-2022 for TENA products are based on Life Cycle Assessments (LCA). The LCA is conducted by Essity, and third party verified in 2023.

Production of TENA products



TENA products are made using high-quality materials, with strict requirements on product safety. The materials used are cellulose fibers from certified forestry and purpose-specific plastic materials. Production takes place at high-technology facilities with stringent hygienic and product safety standards that guarantee product quality and ensure users' safety and well-being.

Life cycle of an absorbent hygiene product

LIFE CYCLE DESCRIPTION

The life cycle of a TENA product starts with the **UPSTREAM PROCESSES:** These include extraction of natural resources for the different raw materials as well as fuel production for both heat and power generation. The production of the raw materials, such as fluff pulp and superabsorbent polymers for the absorbent core, nonwovens for inner lining, and plastic films for the outer shell are part of the upstream processes. Transports of raw materials to the manufacturing

The **CORE PROCESS**, the actual manufacturing of the different TENA products, is a highly efficient converting process where the different materials are put together with high precision, which results in well performing products with an efficient use of resources thanks to innovative design and scientific solutions. The core process also includes handling of production waste.

In the **DOWNSTREAM PROCESSES**, the products are transported to the customer either in the homecare segment or for institutional users. The use phase as such has no environmental impact and gives therefore no contribution to the calculations. The final step is the waste management, also including handling of packaging waste.

The life cycle calculations for Libero / Dry Kids products in this EPD are "cradle-to-grave", i.e., all process of upstream, core and downstream are included as in the figure above.

Parameters in the declaration

FUNCTIONAL UNIT	The functional unit is according to PCR 2011:14, one product. In addition, the result is reported for a standard number of products used for one day, which is defined as four products.
CALCULATION OF GLOBAL WARMING POTENTIAL	Both emissions to and removals of CO_2 from the atmosphere, originating from both fossil and biogenic sources, are accounted for with a time interval of 100 years. Removal of carbon dioxide into growing trees and emissions of carbon dioxide corresponding to the content of biogenic carbon in the product is reported as CO_2 removals and biogenic CO_2 emissions, respectively.
WASTE MANAGEMENT SCENARIO	The waste management is calculated based on the sales of TENA products on the EU market, with an average waste handling for EU 27 (EUROSTAT 2019) giving a scenario with 55 % incineration and 45 % landfill. Impacts of incineration process with energy recovery are attributed 50 % to the product and 50 % to the energy recovery process. Benefits and credits of energy recovery are attributed 100 % to energy recovery (outside system boundaries).
	Emissions of biogenic CO_2 associated with waste management, is reported.
REPRESENTATIVE PRODUCT	A representative product is chosen when there are minor variations for the same product, such as technology and packaging. In the EPD, the representation of such different TENA products is done by a representative product, i.e. more than one product can be represented by the same calculation. The representative product always has the highest environmental impact, and hence a conservative approach is taken for the results. However, the variations within the different tiered products is not more than +/- 10 %, which follows the General Programme Instructions.
LIST OF MATERIALS	The materials listed in the composition table are combined into three groups to keep a level of confidentiality. A general list of content is also shown. For the life cycle calculations each product's particular specification have been used.
PACKAGING	The packaging consists of a consumer pack, a polyethylene plastic bag, and transport packaging of corrugated board boxes, i.e., made of renewable fibers. Different levels of recycled plastic materials is used in the consumer pack.
MANUFACTURING SITES	Baby diapers are manufactured in one of the following factories; Falkenberg/Sweden, Olawa/Poland, Hoogezand/Netherlands or Valls/Spain. Two articles are with external supplier in Europe. The production sites are certified with management systems for quality, environment and health and safety: ISO 13485, ISO 14001 and ISO 18001. For the life cycle calculations each product's actual production site with specific production data is used.
GEOGRAPHICAL SCOPE	This EPD covers products sold in Europe.
VALIDITY OF DATA	The most important raw materials in the products, pulp and SAP, are mainly data from 2018-2021. Supplier data for raw materials like film and nonwoven as well as other, minor materials are may be some years older. Manufacturing data are from 2022. Article specifications are from 2023.
THOUSAND SEPARATOR AND DECIMAL MARK	SI style (French version): 1 234,56; i.e. comma is used as decimal mark. Number of value digits: 3

Additional environmental information

WOOD PULP: Essity works with a strict sourcing policy and only use fibers from known sources. The suppliers are expected to continually increase the proportion of certified fibers from recognized certification schemes.

Certifications: All fluff pulp suppliers for TENA products are FSC Chain-of-Custody certified and all pulp meet as a minimum the FSC controlled wood standard, in addition to other forest certification schemes that may be applied.

ECF pulp: All pulps used for TENA products are produced in Elementary Chlorine Free (ECF) processes.

PLASTIC MATERIALS: All the plastic materials used in products for the European market do not intentionally contain lead, hexavalent chrome and related compounds, phthalates, acrylamide, antimony, brominated flame retardants, or organotin compounds, except in form of impurities. The additives used in plastics comply with the EC Regulations No. 1272/2008 and No. 1907/2006 (REACH), and their subsequent amendments.

Lotions, creams and/or deodorant substances are not added to the products. Inks or dyes that may be present are used for functional requirements and not for aesthetic-commercial purposes.

PACKAGING: Packaging meets the requirements of Annex F of part IV, Legislative Decree 152/2006. Corrugated board boxes for transport packaging are made of at least 80 % recycled fibers

2024: Revision of TENA EPDs

The TENA EPDs were first published in 2015, and the number of articles for the TENA product groups have increased over the years. A general revision was done in 2020 with the validity to 2025, but now all EPDs are revised again. There are new rules and guidance for the environmental impact categories to which the calculations have been adapted, e.g., handling biogenic carbon, acidification and eutrophication potentials. This alters to some extent the environmental profile of the products. However, a follow up of the carbon footprint of TENA products (Environmental achievements, page 7) show significant reductions between the years 2008 and 2022 since the continuous product development cover new and better product designs, with less use of material, improved production by suppliers and improvements at TENA manufacturing sites.

Environmental Product Declaration Verification & Programme Information

The calculations for the environmental product declaration (EPD) are performed according to ISO 14040 and ISO 14044, ISO 14025.

EPD's within the same product category but from different programmes may not be comparable.

Product category rules (PCR): Absorbent Hygiene Products, 2011:14, version 3.01, UN CPC 32193 General Programme Instructions ver.4.01 Programme operator: EPD International AB, Box 210 60, SE-100 31 Stockholm, Sweden e-mail: info@environdec.com Product Category Rules review was conducted by: The Technical Committee of the International EPD® System. Chair: Massimo Marino Contact via info@environdec.com Independent verification of the declaration and data, according to ISO 14025:2006: □ EPD process certification ☑ EPD verification Procedure for follow up of data during EPD validity involves third party verifier: □Yes 🗵 No Third party verifier: Håkan Stripple at IVL Swedish Environmental Research Institute, P.O. Box 53021, SE-400 14 Gothenburg, Sweden Hakan.Stripple@IVL.se Divl Accredited by : Håkan Stripple is an independent individual verifier in the International EPD® System. Declaration owner: Essity Hygiene & Health AB SE-405 03 GÖTEBORG Anna-Karin Gunnergren, anna-karin.gunnergren@essity.com The EPD owner has the sole ownership, liability, and responsibility for the EPD

Libero assortment & DryKids environmental performance

The Libero assortment fulfils the demands for premiumbrand baby diaper and the diapers have an absorption capacity/function that cover different steps of the baby's diaper needs. The diapers consist of an absorbent core, anti-leakage barrier, fastening system, and a back sheet. The assortment is uni-sex.

Libero Newborn, Comfort, UP&GO, Touch, and Sleep Tight are all labelled with the Nordic Swan.

DryKids assortment of breathable diapers for children quickly absorb urine and help to keep the child's skin dry and healthy.

Composition for Libero products (specific composition is used in all calculations).					
Pulp	25 - 26 %				
Polymers	50 - 52 %				
Plastics	23 - 24 %				

Content declaration
Calcium carbonate
Cellulose pulp
Glue
Ink
Polyester
Polyethylene
Polypropylene
Super absorbent
Synthetic elastics

1. Libero Newborn 1

3023 0023 / 3023 0032

			one absorbent product						
Environmental impact category									
	Unit	Upstream	Core	Downstream	Total				
ossil	kg CO ₂ eq.	0,029	0,002	0,010	0,042				
Biogenic	kg CO ₂ eq.	-0,009	0,000	0,011	0,002				
and use and land. ransformation	kg CO ₂ eq.	0,00001	0,00001	0,00003	0,00004				
otal	kg CO ₂ eq.	0,020	0,002	0,021	0,044				
Acidification potential (AP)		9,58E-05	3,66E-05	1,57E-05	1,48E-04				
Eutrophication potential (EP), freshwater		7,23E-07	1,36E-08	8,05E-08	8,17E-07				
EP), marine	kg N eq.	2,43E-05	9,46E-06	9,52E-06	4,33E-05				
EP), terrestrial	mol N eq.	2,45E-04	1,03E-04	7,48E-05	4,22E-04				
pospheric ozone	kg NMVOC eq.	7,11E-05	2,57E-05	1,46E-05	1,11E-04				
I (ODP)	CFC-11 eq.	8,70E-11	9,23E-13	5,95E-12	9,39E-11				
I - Minerals and	kg Sb eq.	1,61E-08	3,11E-09	3,50E-10	1,96E-08				
ıl - Fossil fuels	MJ, net calorofic value	8,83E-01	3,30E-02	4,68E-02	9,63E-01				
	m³ eq.	1,42E-01	1,17E-03	2,18E-03	1,46E-01				
	iogenic and use and land ansformation otal otal otal otal otal otal otal otal	ossilkg CO2 eq.iogenickg CO2 eq.and use and land ansformationkg CO2 eq.otalkg CO2 eq.otalkg CO2 eq.otalkg CO2 eq.otalkg CO2 eq.p)mol H ⁺ eq.EP), freshwaterkg P eq.EP), terrestrialmol N eq.pospheric ozonekg NMVOC eq.(ODP)CFC-11 eq.I - Minerals andkg Sb eq.I - Fossil fuelsMJ, net calorofic value	ossilkg CO2 eq.0,029iogenickg CO2 eq0,009and use and land ansformationkg CO2 eq.0,00001otalkg CO2 eq.0,020otalkg CO2 eq.0,020mol H ⁺ eq.9,58E-05EP), freshwaterkg P eq.7,23E-07EP), marinekg N eq.2,43E-05EP), terrestrialmol N eq.2,45E-04pospheric ozonekg NMVOC eq.7,11E-05(ODP)CFC-11 eq.8,70E-11I - Minerals andkg Sb eq.1,61E-08I - Fossil fuelsMJ, net calorofic value8,83E-01	ossil kg CO2 eq. 0,029 0,002 iogenic kg CO2 eq. -0,009 0,000 and use and land ansformation kg CO2 eq. 0,0001 0,0001 otal kg CO2 eq. 0,020 0,002 opspheric ozone kg P eq. 7,23E-07 1,36E-08 EP), terrestrial mol N eq. 2,45E-04 1,03E-04 pospheric ozone kg NMVOC eq. 7,11E-05 2,57E-05 (ODP) CFC-11 eq. 8,70E-11 9,23E-13 I - Minerals and kg Sb eq. 1,61E-08 3,11E-09 I - Fossil fuels MJ, net calorofic value 8,83E-01 3,30E-02	ossil kg CO2 eq. 0,029 0,002 0,010 iogenic kg CO2 eq. -0,009 0,000 0,011 and use and land ansformation kg CO2 eq. 0,0001 0,00001 0,0003 otal kg CO2 eq. 0,020 0,002 0,021 otal mol H ⁺ eq. 9,58E-05 3,66E-05 1,57E-05 EP), freshwater kg P eq. 7,23E-07 1,36E-08 8,05E-08 EP), marine kg N eq. 2,45E-04 1,03E-04 7,48E-05 pospheric ozone kg NMVOC eq. 7,11E-05 2,57E-05 1,46E-05 (ODP) CFC-11 eq. 8,70E-11 9,23E-13 5,95E-12				

Resources							
Parameter		Unit	Upstream	Core	Downstream	Total	
Primary energy resources - Renewable	Used as energy carrier	MJ, net calorofic value	1,49E-01	1,72E-01	3,94E-03	3,25E-01	
	Used as raw materials	MJ, net calorofic value	5,77E-02	(N/A)	(N/A)	5,77E-02	
	Total	MJ, net calorofic value	2,06E-01	1,72E-01	3,94E-03	3,82E-01	
Primary energy	Used as energy carrier	MJ, net calorofic value	8,83E-01	3,31E-02	4,69E-02	9,63E-01	
resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)	
	Total	MJ, net calorofic value	8,83E-01	3,31E-02	4,69E-02	9,63E-01	

2. Libero Newborn 2

one absorbent product							
Environmental impact category							
Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,037	0,003	0,013	0,053	
Global warming	Biogenic	kg CO ₂ eq.	-0,008	0,000	0,010	0,002	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00001	0,00001	0,00003	0,00005	
	Total	kg CO ₂ eq.	0,029	0,003	0,023	0,055	
Acidification potential	(AP)	mol H ⁺ eq.	1,14E-04	5,02E-05	1,90E-05	1,84E-04	
Eutrophication potentia	al (EP), freshwater	kg P eq.	8,25E-07	1,72E-08	1,06E-07	9,48E-07	
Eutrophication potentia	al (EP), marine	kg N eq.	2,85E-05	1,28E-05	1,06E-05	5,19E-05	
Eutrophication potentia	al (EP), terrestrial	mol N eq.	2,96E-04	1,39E-04	8,91E-05	5,24E-04	
Formation potential of t (POCP)	tropospheric ozone	kg NMVOC eq.	8,71E-05	3,51E-05	1,70E-05	1,39E-04	
Ozone depletion potential (ODP)		CFC-11 eq.	8,94E-11	1,18E-12	5,83E-12	9,65E-11	
Abiotic depletion potential - Minerals and metals (ADP-elements)		kg Sb eq.	2,45E-08	3,98E-09	3,88E-10	2,88E-08	
Abiotic depletion poten (ADP-fossil fuels)	•	MJ, net calorofic value	1,10E+00	4,28E-02	5,60E-02	1,20E+00	
Water scarcity potentia	al	m³ eq.	1,64E-01	1,50E-03	2,82E-03	1,68E-01	

Resources						
Parameter		Unit	Upstream	Core	Downstream	Total
Drimani onorgy	Used as energy carrier	MJ, net calorofic value	1,62E-01	2,20E-01	4,75E-03	3,86E-01
Primary energy resources - Renewable	Used as raw materials	MJ, net calorofic value	5,77E-02	(N/A)	(N/A)	5,77E-02
	Total	MJ, net calorofic value	2,19E-01	2,20E-01	4,75E-03	4,44E-01
Drimani onorrav	Used as energy carrier	MJ, net calorofic value	1,10E+00	4,28E-02	5,62E-02	1,20E+00
Primary energy resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)
	Total	MJ, net calorofic value	1,10E+00	4,28E-02	5,62E-02	1,20E+00

3023 0023

one absorbent product

Environmental impact category							
Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,042	0,004	0,015	0,061	
Global warming	Biogenic	kg CO ₂ eq.	-0,008	0,000	0,010	0,002	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00001	0,00001	0,00003	0,00006	
	Total	kg CO ₂ eq.	0,034	0,004	0,025	0,063	
Acidification potential (AP)		mol H ⁺ eq.	1,31E-04	6,01E-05	2,19E-05	2,13E-04	
Eutrophication potential (EP), freshwater		kg P eq.	9,16E-07	1,97E-08	1,27E-07	1,06E-06	
Eutrophication potential (EP), marine		kg N eq.	3,22E-05	1,53E-05	1,16E-05	5,92E-05	
Eutrophication potentia	II (EP), terrestrial	mol N eq.	3,38E-04	1,67E-04	1,02E-04	6,07E-04	
Formation potential of t (POCP)	ropospheric ozone	kg NMVOC eq.	9,95E-05	4,20E-05	1,93E-05	1,61E-04	
Ozone depletion potent	ial (ODP)	CFC-11 eq.	9,62E-11	1,36E-12	5,84E-12	1,03E-10	
Abiotic depletion potential - Minerals and metals (ADP-elements)		kg Sb eq.	3,06E-08	4,57E-09	4,25E-10	3,56E-08	
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,27E+00	4,98E-02	6,43E-02	1,39E+00	
Water scarcity potentia	al	m³ eq.	1,78E-01	1,72E-03	3,33E-03	1,83E-01	

Resources								
Parameter		Unit	Upstream	Core	Downstream	Total		
. .	Used as energy carrier	MJ, net calorofic value	1,70E-01	2,53E-01	5,47E-03	4,29E-01		
Primary energy resources - Renewable	Used as raw materials	MJ, net calorofic value	5,77E-02	(N/A)	(N/A)	5,77E-02		
Kellewable	Total	MJ, net calorofic value	2,28E-01	2,53E-01	5,47E-03	4,86E-01		
Drimary operay	Used as energy carrier	MJ, net calorofic value	1,27E+00	4,99E-02	6,44E-02	1,39E+00		
Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)		
	Total	MJ, net calorofic value	1,27E+00	4,99E-02	6,44E-02	1,39E+00		

3023 0023

one absorbent product

Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,052	0,005	0,018	0,074	
Global warming	Biogenic	kg CO ₂ eq.	-0,009	0,000	0,012	0,002	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00001	0,00001	0,00004	0,00007	
	Total	kg CO ₂ eq.	0,043	0,005	0,029	0,077	
Acidification potential (AP)		mol H ⁺ eq.	1,56E-04	7,80E-05	2,65E-05	2,61E-04	
Eutrophication potential (EP), freshwater		kg P eq.	1,10E-06	2,44E-08	1,59E-07	1,28E-06	
Eutrophication potentia	l (EP), marine	kg N eq.	3,86E-05	1,98E-05	1,38E-05	7,22E-05	
Eutrophication potentia	l (EP), terrestrial	mol N eq.	4,09E-04	2,15E-04	1,23E-04	7,47E-04	
Formation potential of t (POCP)	ropospheric ozone	kg NMVOC eq.	1,21E-04	5,44E-05	2,31E-05	1,98E-04	
Ozone depletion potent	ial (ODP)	CFC-11 eq.	1,08E-10	1,69E-12	6,65E-12	1,16E-10	
Abiotic depletion poten metals (ADP-elements)		kg Sb eq.	4,07E-08	5,67E-09	5,03E-10	4,69E-08	
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,55E+00	6,25E-02	7,73E-02	1,69E+00	
Water scarcity potentia	al	m³ eq.	2,11E-01	2,14E-03	4,15E-03	2,17E-01	

Resources						
Parameter		Unit	Upstream	Core	Downstream	Total
D-i	Used as energy carrier	MJ, net calorofic value	1,97E-01	3,14E-01	6,60E-03	5,18E-01
Primary energy resources - Renewable	Used as raw materials	MJ, net calorofic value	6,59E-02	(N/A)	(N/A)	6,59E-02
Kenewable	Total	MJ, net calorofic value	2,63E-01	3,14E-01	6,60E-03	5,84E-01
Drimary operay	Used as energy carrier	MJ, net calorofic value	1,56E+00	6,26E-02	7,75E-02	1,70E+00
Primary energy resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)
	Total	MJ, net calorofic value	1,56E+00	6,26E-02	7,75E-02	1,70E+00

one absorbent product

Environmental impact category							
Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,053	0,005	0,018	0,075	
Global warming	Biogenic	kg CO ₂ eq.	-0,010	0,000	0,012	0,003	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00001	0,00001	0,00004	0,00007	
	Total	kg CO ₂ eq.	0,043	0,005	0,030	0,078	
Acidification potential (AP)		mol H ⁺ eq.	1,58E-04	7,93E-05	2,70E-05	2,64E-04	
Eutrophication potential (EP), freshwater		kg P eq.	1,12E-06	2,46E-08	1,60E-07	1,31E-06	
Eutrophication potentia	l (EP), marine	kg N eq.	3,92E-05	2,01E-05	1,41E-05	7,35E-05	
Eutrophication potentia	l (EP), terrestrial	mol N eq.	4,14E-04	2,19E-04	1,25E-04	7,58E-04	
Formation potential of t (POCP)	ropospheric ozone	kg NMVOC eq.	1,22E-04	5,52E-05	2,36E-05	2,01E-04	
Ozone depletion potent	ial (ODP)	CFC-11 eq.	1,12E-10	1,70E-12	7,01E-12	1,21E-10	
Abiotic depletion poten metals (ADP-elements)		kg Sb eq.	4,11E-08	5,73E-09	5,18E-10	4,74E-08	
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,57E+00	6,34E-02	7,88E-02	1,71E+00	
Water scarcity potentia	al	m³ eq.	2,15E-01	2,16E-03	4,19E-03	2,21E-01	

Resources								
Parameter		Unit	Upstream	Core	Downstream	Total		
Primary energy resources - Renewable	Used as energy carrier	MJ, net calorofic value	2,02E-01	3,17E-01	6,71E-03	5,26E-01		
	Used as raw materials	MJ, net calorofic value	6,92E-02	(N/A)	(N/A)	6,92E-02		
Kellewable	Total	MJ, net calorofic value	2,72E-01	3,17E-01	6,71E-03	5,96E-01		
Drimany oporay	Used as energy carrier	MJ, net calorofic value	1,57E+00	6,35E-02	7,89E-02	1,71E+00		
Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)		
	Total	MJ, net calorofic value	1,57E+00	6,35E-02	7,89E-02	1,71E+00		

one absorbent product

Environmental impact category							
Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,058	0,005	0,019	0,082	
Global warming	Biogenic	kg CO ₂ eq.	-0,011	0,000	0,014	0,003	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00001	0,00005	0,00008	
	Total	kg CO ₂ eq.	0,046	0,005	0,034	0,085	
Acidification potential (AP)		mol H ⁺ eq.	1,74E-04	8,49E-05	2,94E-05	2,89E-04	
Eutrophication potential (EP), freshwater		kg P eq.	1,25E-06	2,69E-08	1,73E-07	1,45E-06	
Eutrophication potentia	al (EP), marine	kg N eq.	4,34E-05	2,16E-05	1,57E-05	8,06E-05	
Eutrophication potentia	al (EP), terrestrial	mol N eq.	4,56E-04	2,34E-04	1,37E-04	8,27E-04	
Formation potential of (POCP)	tropospheric ozone	kg NMVOC eq.	1,34E-04	5,92E-05	2,59E-05	2,20E-04	
Ozone depletion poten	tial (ODP)	CFC-11 eq.	1,30E-10	1,85E-12	8,02E-12	1,40E-10	
Abiotic depletion poter metals (ADP-elements		kg Sb eq.	4,35E-08	6,24E-09	5,74E-10	5,03E-08	
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,72E+00	6,87E-02	8,60E-02	1,87E+00	
Water scarcity potenti	al	m³ eq.	2,44E-01	2,35E-03	4,54E-03	2,51E-01	

Resources						
Parameter		Unit	Upstream	Core	Downstream	Total
Primary energy resources -	Used as energy carrier	MJ, net calorofic value	2,28E-01	3,45E-01	7,33E-03	5,81E-01
	Used as raw materials	MJ, net calorofic value	7,91E-02	(N/A)	(N/A)	7,91E-02
Renewable	Total	MJ, net calorofic value	3,07E-01	3,45E-01	7,33E-03	6,60E-01
Drimani oporav	Used as energy carrier	MJ, net calorofic value	1,72E+00	6,88E-02	8,62E-02	1,87E+00
Primary energy resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)
	Total	MJ, net calorofic value	1,72E+00	6,88E-02	8,62E-02	1,87E+00

one absorbent product

Environmental impact category							
Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,063	0,006	0,021	0,090	
Global warming	Biogenic	kg CO ₂ eq.	-0,014	0,000	0,017	0,003	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00002	0,00005	0,00009	
	Total	kg CO ₂ eq.	0,050	0,006	0,038	0,094	
Acidification potential (AP)		mol H ⁺ eq.	1,91E-04	9,55E-05	3,32E-05	3,19E-04	
Eutrophication potential (EP), freshwater		kg P eq.	1,40E-06	2,96E-08	1,91E-07	1,62E-06	
Eutrophication potentia	ıl (EP), marine	kg N eq.	4,79E-05	2,42E-05	1,79E-05	9,00E-05	
Eutrophication potentia	ıl (EP), terrestrial	mol N eq.	5,00E-04	2,63E-04	1,54E-04	9,18E-04	
Formation potential of t (POCP)	ropospheric ozone	kg NMVOC eq.	1,47E-04	6,65E-05	2,93E-05	2,43E-04	
Ozone depletion potent	tial (ODP)	CFC-11 eq.	1,45E-10	2,04E-12	9,31E-12	1,57E-10	
Abiotic depletion poten metals (ADP-elements)		kg Sb eq.	4,88E-08	6,88E-09	6,57E-10	5,64E-08	
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,87E+00	7,64E-02	9,73E-02	2,04E+00	
Water scarcity potentia	al	m³ eq.	2,66E-01	2,59E-03	5,02E-03	2,74E-01	

Resources								
Parameter		Unit	Upstream	Core	Downstream	Total		
Primary energy resources -	Used as energy carrier	MJ, net calorofic value	2,54E-01	3,81E-01	8,25E-03	6,44E-01		
	Used as raw materials	MJ, net calorofic value	9,07E-02	(N/A)	(N/A)	9,07E-02		
Renewable	Total	MJ, net calorofic value	3,45E-01	3,81E-01	8,25E-03	7,34E-01		
Drimany oporty	Used as energy carrier	MJ, net calorofic value	1,87E+00	7,65E-02	9,75E-02	2,04E+00		
Primary energy resources - Used as raw Non-renewable Total	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)		
	Total	MJ, net calorofic value	1,87E+00	7,65E-02	9,75E-02	2,04E+00		

3023 0038

one absorbent product

Parameter		Unit	Upstream	Core	Downstream	Total		
	Fossil	kg CO ₂ eq.	0,056	0,005	0,021	0,082		
Global warming	Biogenic	kg CO ₂ eq.	-0,017	0,000	0,021	0,004		
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00001	0,00002	0,00005	0,00008		
	Total	kg CO ₂ eq.	0,039	0,005	0,041	0,086		
Acidification potential (AP)		mol H ⁺ eq.	1,84E-04	8,49E-05	3,12E-05	3,00E-04		
Eutrophication potential (EP), freshwater		kg P eq.	1,35E-06	2,83E-08	1,71E-07	1,55E-06		
Eutrophication potentia	l (EP), marine	kg N eq.	4,64E-05	2,18E-05	1,86E-05	8,68E-05		
Eutrophication potentia	l (EP), terrestrial	mol N eq.	4,74E-04	2,37E-04	1,46E-04	8,57E-04		
Formation potential of t (POCP)	ropospheric ozone	kg NMVOC eq.	1,36E-04	5,95E-05	2,85E-05	2,24E-04		
Ozone depletion potent	ial (ODP)	CFC-11 eq.	1,46E-10	1,93E-12	1,17E-11	1,60E-10		
Abiotic depletion potential - Minerals and metals (ADP-elements)		kg Sb eq.	3,67E-08	6,51E-09	6,86E-10	4,39E-08		
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,68E+00	7,15E-02	9,14E-02	1,84E+00		
Water scarcity potentia	al	m³ eq.	1,71E-01	2,45E-03	4,67E-03	1,79E-01		

Resources								
Parameter		Unit	Upstream	Core	Downstream	Total		
Primary energy resources -	Used as energy carrier	MJ, net calorofic value	2,75E-01	3,60E-01	7,76E-03	6,43E-01		
	Used as raw materials	MJ, net calorofic value	1,15E-01	(N/A)	(N/A)	1,15E-01		
Renewable	Total	MJ, net calorofic value	3,91E-01	3,60E-01	7,76E-03	7,58E-01		
Drimany operay	Used as energy carrier	MJ, net calorofic value	1,68E+00	7,17E-02	9,16E-02	1,84E+00		
Primary energy resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)		
	Total	MJ, net calorofic value	1,68E+00	7,17E-02	9,16E-02	1,84E+00		

one absorbent product

Environmental impact category								
Parameter		Unit	Upstream	Core	Downstream	Total		
	Fossil	kg CO ₂ eq.	0,062	0,006	0,023	0,092		
Global warming	Biogenic	kg CO ₂ eq.	-0,021	0,000	0,026	0,004		
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00002	0,00006	0,00009		
	Total	kg CO ₂ eq.	0,041	0,006	0,049	0,096		
Acidification potential (AP)		mol H ⁺ eq.	2,07E-04	9,40E-05	3,54E-05	3,36E-04		
Eutrophication potential (EP), freshwater		kg P eq.	1,56E-06	3,15E-08	1,91E-07	1,78E-06		
Eutrophication potentia	ll (EP), marine	kg N eq.	5,31E-05	2,42E-05	2,14E-05	9,87E-05		
Eutrophication potentia	ıl (EP), terrestrial	mol N eq.	5,35E-04	2,62E-04	1,67E-04	9,65E-04		
Formation potential of t (POCP)	tropospheric ozone	kg NMVOC eq.	1,53E-04	6,60E-05	3,26E-05	2,51E-04		
Ozone depletion potent	tial (ODP)	CFC-11 eq.	1,74E-10	2,15E-12	1,37E-11	1,90E-10		
Abiotic depletion poten metals (ADP-elements)		kg Sb eq.	4,06E-08	7,24E-09	7,91E-10	4,86E-08		
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,88E+00	7,97E-02	1,04E-01	2,07E+00		
Water scarcity potentia	al	m³ eq.	1,98E-01	2,73E-03	5,21E-03	2,06E-01		

Resources	Resources								
Parameter		Unit	Upstream	Core	Downstream	Total			
Primary energy resources - Renewable	Used as energy carrier	MJ, net calorofic value	3,16E-01	4,01E-01	8,82E-03	7,25E-01			
	Used as raw materials	MJ, net calorofic value	1,32E-01	(N/A)	(N/A)	1,32E-01			
Kellewable	Total	MJ, net calorofic value	4,48E-01	4,01E-01	8,82E-03	8,57E-01			
Primary energy	Used as energy carrier	MJ, net calorofic value	1,88E+00	7,99E-02	1,05E-01	2,07E+00			
resources - Non-renewable	ces - Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)			
Non-renewable	Total	MJ, net calorofic value	1,88E+00	7,99E-02	1,05E-01	2,07E+00			

one absorbent product

Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,067	0,006	0,025	0,099	
Global warming	Biogenic	kg CO ₂ eq.	-0,023	0,000	0,028	0,005	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00002	0,00006	0,00010	
	Total	kg CO ₂ eq.	0,044	0,006	0,053	0,104	
Acidification potential (AP)		mol H ⁺ eq.	2,24E-04	1,01E-04	3,83E-05	3,63E-04	
Eutrophication potential (EP), freshwater		kg P eq.	1,69E-06	3,38E-08	2,05E-07	1,93E-06	
Eutrophication potentia	al (EP), marine	kg N eq.	5,75E-05	2,59E-05	2,31E-05	1,06E-04	
Eutrophication potentia	al (EP), terrestrial	mol N eq.	5,78E-04	2,81E-04	1,80E-04	1,04E-03	
Formation potential of ((POCP)	tropospheric ozone	kg NMVOC eq.	1,65E-04	7,08E-05	3,52E-05	2,71E-04	
Ozone depletion potent	tial (ODP)	CFC-11 eq.	2,06E-10	2,29E-12	1,47E-11	2,23E-10	
Abiotic depletion poten metals (ADP-elements		kg Sb eq.	4,41E-08	7,73E-09	8,51E-10	5,27E-08	
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	2,03E+00	8,56E-02	1,13E-01	2,23E+00	
Water scarcity potentia	al	m³ eq.	2,32E-01	2,91E-03	5,60E-03	2,41E-01	

Resources							
Parameter		Unit	Upstream	Core	Downstream	Total	
Deimana	Used as energy carrier	MJ, net calorofic value	3,38E-01	4,27E-01	9,53E-03	7,75E-01	
Primary energy resources - Renewable	Used as raw materials	MJ, net calorofic value	1,40E-01	(N/A)	(N/A)	1,40E-01	
Kellewable	Total	MJ, net calorofic value	4,78E-01	4,27E-01	9,53E-03	9,15E-01	
Primary energy	Used as energy carrier	MJ, net calorofic value	2,03E+00	8,57E-02	1,13E-01	2,23E+00	
resources - Non-renewable	urces - Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)	
Non-renewable	Total	MJ, net calorofic value	2,03E+00	8,57E-02	1,13E-01	2,23E+00	

one absorbent product

Parameter		Unit	Upstream	Core	Downstream	Total	
Global warming potential (GWP)	Fossil	kg CO ₂ eq.	0,073	0,007	0,027	0,107	
	Biogenic	kg CO ₂ eq.	-0,025	0,000	0,030	0,005	
	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00002	0,00007	0,00011	
	Total	kg CO ₂ eq.	0,048	0,007	0,057	0,113	
Acidification potential (AP)		mol H ⁺ eq.	2,40E-04	1,15E-04	4,22E-05	3,98E-04	
Eutrophication potential (EP), freshwater		kg P eq.	1,82E-06	3,68E-08	2,26E-07	2,09E-06	
Eutrophication potentia	al (EP), marine	kg N eq.	6,21E-05	2,94E-05	2,51E-05	1,17E-04	
Eutrophication potentia	al (EP), terrestrial	mol N eq.	6,24E-04	3,20E-04	1,98E-04	1,14E-03	
Formation potential of ((POCP)	tropospheric ozone	kg NMVOC eq.	1,78E-04	8,06E-05	3,85E-05	2,97E-04	
Ozone depletion potent	tial (ODP)	CFC-11 eq.	2,28E-10	2,50E-12	1,57E-11	2,46E-10	
Abiotic depletion poten metals (ADP-elements		kg Sb eq.	5,23E-08	8,43E-09	9,29E-10	6,17E-08	
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	2,19E+00	9,48E-02	1,24E-01	2,41E+00	
Water scarcity potentia	al	m³ eq.	2,57E-01	3,18E-03	6,16E-03	2,67E-01	

Resources							
Parameter		Unit	Upstream	Core	Downstream	Total	
- ·	Used as energy carrier	MJ, net calorofic value	3,58E-01	4,67E-01	1,05E-02	8,35E-01	
Primary energy resources - Renewable	Used as raw materials	MJ, net calorofic value	1,48E-01	(N/A)	(N/A)	1,48E-01	
Kellewable	Total	MJ, net calorofic value	5,06E-01	4,67E-01	1,05E-02	9,83E-01	
Primary energy	Used as energy carrier	MJ, net calorofic value	2,19E+00	9,50E-02	1,25E-01	2,41E+00	
resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)	
Non-renewable		MJ, net calorofic value	2,19E+00	9,50E-02	1,25E-01	2,41E+00	

12. Libero Touch Premature

3023 0038

one absorbent product

Environmental impact category								
Parameter		Unit	Upstream	Core	Downstream	Total		
	Fossil	kg CO ₂ eq.	0,025	0,002	0,008	0,036		
Global warming	Biogenic	kg CO ₂ eq.	-0,008	0,000	0,009	0,002		
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00001	0,00001	0,00002	0,00003		
	Total	kg CO ₂ eq.	0,017	0,002	0,018	0,037		
Acidification potential (AP)	mol H ⁺ eq.	8,12E-05	3,17E-05	1,28E-05	1,26E-04		
Eutrophication potential (EP), freshwater		kg P eq.	6,46E-07	1,14E-08	6,73E-08	7,24E-07		
Eutrophication potentia	ll (EP), marine	kg N eq.	2,06E-05	8,19E-06	7,86E-06	3,66E-05		
Eutrophication potentia	ıl (EP), terrestrial	mol N eq.	2,07E-04	8,89E-05	6,06E-05	3,56E-04		
Formation potential of t (POCP)	ropospheric ozone	kg NMVOC eq.	5,94E-05	2,23E-05	1,19E-05	9,36E-05		
Ozone depletion potent	ial (ODP)	CFC-11 eq.	7,31E-11	7,78E-13	5,12E-12	7,90E-11		
Abiotic depletion poten metals (ADP-elements)		kg Sb eq.	1,41E-08	2,62E-09	2,89E-10	1,70E-08		
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	7,56E-01	2,79E-02	3,76E-02	8,22E-01		
Water scarcity potentia	al	m³ eq.	1,23E-01	9,87E-04	1,85E-03	1,26E-01		

Resources								
Parameter		Unit	Upstream	Core	Downstream	Total		
D.i.	Used as energy carrier	MJ, net calorofic value	1,26E-01	1,45E-01	3,19E-03	2,74E-01		
Primary energy resources - Renewable	Used as raw materials	MJ, net calorofic value	4,95E-02	(N/A)	(N/A)	4,95E-02		
Reliewable	Total	MJ, net calorofic value	1,75E-01	1,45E-01	3,19E-03	3,23E-01		
Primary energy	Used as energy carrier	MJ, net calorofic value	7,57E-01	2,80E-02	3,77E-02	8,23E-01		
resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)		
Non-renewable	Total	MJ, net calorofic value	7,57E-01	2,80E-02	3,77E-02	8,23E-01		

13. Libero Sleep Tight 9

.

Environmental impact category								
Parameter		Unit	Upstream	Core	Downstream	Total		
	Fossil	kg CO ₂ eq.	0,080	0,008	0,025	0,113		
Global warming	Biogenic	kg CO ₂ eq.	-0,032	0,000	0,040	0,008		
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00002	0,00007	0,00012		
	Total	kg CO ₂ eq.	0,048	0,008	0,066	0,122		
Acidification potential (AP)		mol H ⁺ eq.	2,42E-04	1,44E-04	4,64E-05	4,33E-0		
Eutrophication potent	tial (EP), freshwater	kg P eq.	2,52E-06	4,13E-08	2,20E-07	2,78E-0		
Eutrophication potent	tial (EP), marine	kg N eq.	6,41E-05	3,62E-05	3,24E-05	1,33E-0		
Eutrophication potent	tial (EP), terrestrial	mol N eq.	6,43E-04	3,94E-04	2,18E-04	1,26E-0		
Formation potential o (POCP)	f tropospheric ozone	kg NMVOC eq.	1,86E-04	9,98E-05	4,47E-05	3,31E-0		
Ozone depletion pote	ntial (ODP)	CFC-11 eq.	2,33E-10	2,86E-12	2,56E-11	2,61E-1		
Abiotic depletion pote metals (ADP-element		kg Sb eq.	5,39E-08	9,62E-09	1,21E-09	6,47E-0		
Abiotic depletion pote (ADP-fossil fuels)	•	MJ, net calorofic value	2,24E+00	1,10E-01	1,34E-01	2,48E+0		
Water scarcity poten	tial	m³ eq.	4,51E-01	3,63E-03	6,44E-03	4,61E-0		

Resources							
Parameter		Unit	Upstream	Core	Downstream	Total	
B .:	Used as energy carrier	MJ, net calorofic value	4,80E-01	5,32E-01	1,13E-02	1,02E+00	
Primary energy resources - Renewable	Used as raw materials	MJ, net calorofic value	2,64E-01	(N/A)	(N/A)	2,64E-01	
Kellewable	Total	MJ, net calorofic value	7,44E-01	5,32E-01	1,13E-02	1,29E+00	
Drimany oportay	Used as energy carrier	MJ, net calorofic value	2,24E+00	1,10E-01	1,34E-01	2,48E+00	
Primary energy resources - Non-renewable	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)	
NON-TENEWADIE	Total	MJ, net calorofic value	2,24E+00	1,10E-01	1,34E-01	2,48E+00	

14. Libero Sleep Tight 10

one absorbent product

Environmental impact category							
Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,092	0,009	0,028	0,130	
Global warming	Biogenic	kg CO ₂ eq.	-0,037	0,000	0,047	0,010	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00002	0,00008	0,00013	
	Total	kg CO ₂ eq.	0,055	0,010	0,076	0,140	
Acidification potential (AP)		mol H ⁺ eq.	2,76E-04	1,69E-04	5,15E-05	4,97E-04	
Eutrophication potential (EP), freshwater		kg P eq.	2,99E-06	4,59E-08	2,52E-07	3,29E-06	
Eutrophication potentia	al (EP), marine	kg N eq.	7,36E-05	4,24E-05	3,68E-05	1,53E-04	
Eutrophication potentia	al (EP), terrestrial	mol N eq.	7,38E-04	4,61E-04	2,40E-04	1,44E-03	
Formation potential of ((POCP)	tropospheric ozone	kg NMVOC eq.	2,14E-04	1,17E-04	4,98E-05	3,80E-04	
Ozone depletion potent	tial (ODP)	CFC-11 eq.	2,46E-10	3,15E-12	3,04E-11	2,79E-10	
Abiotic depletion poten metals (ADP-elements		kg Sb eq.	6,28E-08	1,06E-08	1,38E-09	7,48E-08	
Abiotic depletion poten (ADP-fossil fuels)	tial - Fossil fuels	MJ, net calorofic value	2,59E+00	1,25E-01	1,47E-01	2,86E+00	
Water scarcity potentia	al	m³ eq.	5,23E-01	4,00E-03	7,47E-03	5,34E-01	

Resources								
Parameter		Unit	Upstream	Core	Downstream	Total		
Primary energy resources -	Used as energy carrier	MJ, net calorofic value	5,62E-01	5,87E-01	1,25E-02	1,16E+00		
	Used as raw materials	MJ, net calorofic value	3,13E-01	(N/A)	(N/A)	3,13E-01		
Renewable	Total	MJ, net calorofic value	8,75E-01	5,87E-01	1,25E-02	1,48E+00		
Drimany oporty	Used as energy carrier	MJ, net calorofic value	2,59E+00	1,26E-01	1,47E-01	2,86E+00		
Primary energy resources - Used Non-renewable Total	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)		
	Total	MJ, net calorofic value	2,59E+00	1,26E-01	1,47E-01	2,86E+00		

15. Dry Kids XL

one absorbent product

Environmental impact category							
Parameter		Unit	Upstream	Core	Downstream	Total	
	Fossil	kg CO ₂ eq.	0,056	0,005	0,019	0,080	
Global warming	Biogenic	kg CO ₂ eq.	-0,011	0,000	0,014	0,003	
potential (GWP)	Land use and land transformation	kg CO ₂ eq.	0,00001	0,00001	0,00004	0,00007	
	Total	kg CO ₂ eq.	0,045	0,005	0,033	0,083	
Acidification potential (AP)	mol H ⁺ eq.	1,68E-04	8,26E-05	2,82E-05	2,79E-04	
Eutrophication potentia	ll (EP), freshwater	kg P eq.	1,26E-06	2,59E-08	1,66E-07	1,46E-06	
Eutrophication potentia	ll (EP), marine	kg N eq.	4,19E-05	2,10E-05	1,52E-05	7,80E-05	
Eutrophication potentia	ıl (EP), terrestrial	mol N eq.	4,39E-04	2,28E-04	1,31E-04	7,98E-04	
Formation potential of t (POCP)	tropospheric ozone	kg NMVOC eq.	1,29E-04	5,76E-05	2,49E-05	2,11E-04	
Ozone depletion potent	tial (ODP)	CFC-11 eq.	1,22E-10	1,79E-12	7,99E-12	1,32E-10	
Abiotic depletion poten metals (ADP-elements)		kg Sb eq.	4,21E-08	6,02E-09	5,57E-10	4,86E-08	
Abiotic depletion poten (ADP-fossil fuels)	tial - Fossil fuels	MJ, net calorofic value	1,68E+00	6,63E-02	8,22E-02	1,83E+00	
Water scarcity potentia	al	m³ eq.	2,44E-01	2,27E-03	4,37E-03	2,51E-01	

Resources

Resources						
Parameter		Unit	Upstream	Core	Downstream	Total
Primary energy resources - Renewable	Used as energy carrier	MJ, net calorofic value	2,24E-01	3,33E-01	7,01E-03	5,64E-01
	Used as raw materials	MJ, net calorofic value	7,91E-02	(N/A)	(N/A)	7,91E-02
	Total	MJ, net calorofic value	3,03E-01	3,33E-01	7,01E-03	6,43E-01
Primary energy resources - Non-renewable	Used as energy carrier	MJ, net calorofic value	1,68E+00	6,64E-02	8,24E-02	1,83E+00
	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)
	Total	MJ, net calorofic value	1,68E+00	6,64E-02	8,24E-02	1,83E+00

16. Dry Kids XL+

one absorbent product

Environmental impact category						
Parameter		Unit	Upstream	Core	Downstream	Total
Global warming potential (GWP)	Fossil	kg CO ₂ eq.	0,062	0,006	0,020	0,088
	Biogenic	kg CO ₂ eq.	-0,014	0,000	0,017	0,003
	Land use and land transformation	kg CO ₂ eq.	0,00002	0,00002	0,00005	0,00008
	Total	kg CO ₂ eq.	0,048	0,006	0,038	0,091
Acidification potential (AP)		mol H ⁺ eq.	1,85E-04	9,33E-05	3,16E-05	3,10E-04
Eutrophication potential (EP), freshwater		kg P eq.	1,42E-06	2,87E-08	1,83E-07	1,63E-06
Eutrophication potential (EP), marine		kg N eq.	4,69E-05	2,36E-05	1,73E-05	8,78E-05
Eutrophication potential (EP), terrestrial		mol N eq.	4,86E-04	2,57E-04	1,47E-04	8,90E-04
Formation potential of tropospheric ozone (POCP)		kg NMVOC eq.	1,42E-04	6,50E-05	2,80E-05	2,35E-04
Ozone depletion potential (ODP)		CFC-11 eq.	1,40E-10	1,98E-12	9,37E-12	1,52E-10
Abiotic depletion potential - Minerals and metals (ADP-elements)		kg Sb eq.	4,76E-08	6,67E-09	6,35E-10	5,49E-08
Abiotic depletion potential - Fossil fuels (ADP-fossil fuels)		MJ, net calorofic value	1,84E+00	7,41E-02	9,22E-02	2,00E+00
Water scarcity potential		m³ eq.	2,68E-01	2,51E-03	4,86E-03	2,75E-01

Resources						
Parameter		Unit	Upstream	Core	Downstream	Total
Primary energy resources - Renewable	Used as energy carrier	MJ, net calorofic value	2,51E-01	3,69E-01	7,84E-03	6,28E-01
	Used as raw materials	MJ, net calorofic value	9,07E-02	(N/A)	(N/A)	9,07E-02
	Total	MJ, net calorofic value	3,42E-01	3,69E-01	7,84E-03	7,19E-01
Primary energy resources - Non-renewable	Used as energy carrier	MJ, net calorofic value	1,84E+00	7,43E-02	9,24E-02	2,01E+00
	Used as raw materials	MJ, net calorofic value	(N/A)	(N/A)	(N/A)	(N/A)
	Total	MJ, net calorofic value	1,84E+00	7,43E-02	9,24E-02	2,01E+00

References

- 1. PCR 2011:14 v. 3.01
- General Programme Instructions for the International EPD® System v. 4.01
- ISO 14040:2006 Environmental management Life cycle assessment – Principles and framework
- 4. ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- 5. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and procedures
- ISO 14020:2022 Environmental labels and declarations General principles
- 7. DPCM 12/01/17 G.U. n. 65 del 18 marzo 2017
- 8. <u>www.environdec.com</u>

Version Revision item

,	1	
L		
	т	

5	New articles added (no new LCA calculations): Libero Comfort 3, art.no. 8190 Libero Comfort 4, art.no. 8198 Libero Comfort 5, art.no. 8206 Libero Comfort 6, art.no. 8208 Libero Comfort 7, art.no. 8210 Libero Sleep Tight 9, art.no. 8685 Libero Sleep Tight 10, art.no. 8387 Articles removed: Libero Comfort 6, art.no. 6324
6	All LCA calculations recalculated according new GPI on updated specifications. Exchanged some photos. Removed articles: Libero Sleep Tight 9 art 8685 Dry Kids Maxi art 5358 Dupplicate of 8387 removed. New articles added: Libero Comfort 3 art 84005 Libero Comfort 4 art 84010 Libero Comfort 5 art 84015 Libero Comfort 6 art 84021 Libero Comfort 7 art 84026

Use better, use less!

We create value for customers and consumers by increasing health and hygiene standards through our innovative solutions, and by sharing knowledge and promoting awareness.

We create business value by meeting societal needs and offering more people an opportunity to work, in better conditions, so they can provide for their families and live happier, fuller lives.

Since 2008 we are continuously reducing the carbon footprint of our absorbent product assortments over the whole product life cycle.

We strive for sustainable continence care with better products. Use better, use less.

