# Environmental Product Declaration

In accordance with ISO 14025 and EN 15804 for:

## Aquafire and Supersil (6, 9 and 12 mm)

**EPD**<sup>®</sup>

from Bifire srl



| Programme:               | The International EPD <sup>®</sup> System, <u>www.environdec.com</u> |
|--------------------------|----------------------------------------------------------------------|
| Programme operator:      | EPD International AB                                                 |
| EPD registration number: | S-P-01593                                                            |
| Publication date:        | 2019-05-17                                                           |
| Valid until:             | 2024-05-14                                                           |
| Geographical scope       | Global                                                               |







## **Programme information**

|            | The International EPD <sup>®</sup> System                           |
|------------|---------------------------------------------------------------------|
| Programme: | EPD International AB<br>Box 210 60<br>SE-100 31 Stockholm<br>Sweden |
|            | www.environdec.com<br>info@environdec.com                           |

Product category rules (PCR): CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES 2012:01, VERSION 2.3 sub PCR ACOUSTICAL SYSTEM SOLUTIONS (CONSTRUCTION PRODUCT) (v2.2) PCR 2012:01-

sub PCR ACOUSTICAL SYSTEM SOLUTIONS (CONSTRUCTION PRODUCT) (v2.2) PCR 2012:01-SUB-PCR-C rev.16/11/2018

PCR review was conducted by: The Technical Committee of the International EPD® System. Chair: Massimo Marino.

Contact via info@environdec.com

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

 $\Box$  EPD process certification  $\boxtimes$  EPD verification

Third party verifier: *Rina Services Spa - signature* 

*In case of accredited certification bodies:* Accredited by: *Accredia, Accreditation n.* 001H.

Procedure for follow-up of data during EPD validity involves third party verifier:

 $\Box$  Yes  $\boxtimes$  No

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.





## **Company information**

<u>Owner of the EPD:</u> Bifire srl, Via Lavoratori Autobianchi, 1, 20832 Desio MB, tel: +39 0362 364570 – mail: <u>bifire@bifire.it</u>

<u>Description of the organisation</u>: BIFIRE®, leader in the production of products for fire protection in construction, industry and marine, offers advantageous technological solutions through a wide mix of products, which constitute a "cut" proposal exactly on the needs of individual customers.

Product-related or management system-related certifications:

- Occupational Health and Safety Management System according to OHSAS 18001: OHS-2399
- Quality Management System according to ISO 9001: 7690/02/S
- Environmental Management System according to ISO 14001: EMS-5106/AN

Name and location of production site:

- Via Lavoratori Autobianchi, 1, 20832 Desio MB: Aquafire production site
- via Bergamo 16, 20037 Paderno Dugnano: Supersil production site

## **Product information**

#### Aquafire

Product identification: slabs for fire protection and soundproofing in construction

<u>Product description:</u> Fiber-reinforced lightweight concrete slab for indoor or outdoor use, 12,5 mm thick.

Very light, highly insulating, water resistant for use in environments with high humidity, it can be used for internal or external applications.

Supplied with smooth side for internal applications with traditional grouting and rough side for plaster and smoothing applications.

<u>UN CPC code:</u> 375 Articles of concrete, cement and plaster <u>Geographical scope:</u> Global

#### Supersil

Product identification: slabs for fire protection and soundproofing in construction

Product description:

SUPERSIL is a high density calcium fiber silicate totally free of asbestos composed of silicates, cement, fibers and inert additives.

It is available in 6 mm, 9 mm and 12 mm thicknesses.

SUPERSIL sheets are treated in an autoclave, making the finished product totally stable in the event of fire, incombustible (class 0), and guaranteeing high mechanical strength and resistance to atmospheric humidity.

SUPERSIL is supplied in rigid self-supporting panels with mechanical stability, flexibility, abrasion resistance and excellent heat performance.

Its high mechanical strength allows it to be used in the most severe conditions within its operating temperatures.

<u>UN CPC code:</u> 375 Articles of concrete, cement and plaster <u>Geographical scope:</u> Global



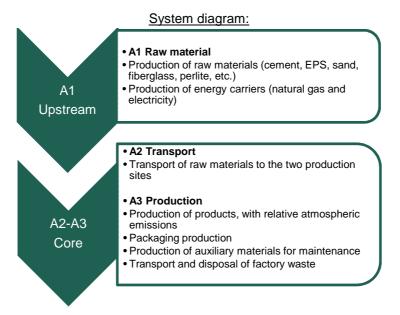


| Technical data   |         | Aquafire | Supersil       |
|------------------|---------|----------|----------------|
| Dry density      | [kg/m3] | 960      | 900            |
| Width            | [mm]    | 1200     | 1200           |
| Length           | [mm]    | 2000     | Da 2000 a 3000 |
| Thickness        |         |          | 6              |
|                  |         |          | 9              |
|                  | [mm]    | 12,5     | 12             |
| Weight           |         |          | 5,4            |
|                  |         |          | 8,1            |
|                  | [kg/m2] | 12       | 10,8           |
| Reaction to fire | -       | A1       | 0/A1           |





## LCA information


Declared unit: 1 m<sup>2</sup> of product

<u>Time representativeness:</u> the data refer to the year 2018.

Database(s) and LCA software used: ecoinvent v. 3.5, November 2018.

Sima pro 9.0

Description of system boundaries: Type of EPD: cradle to gate



<u>Excluded lifecycle stages:</u> the study is limited to the factory gate, as the subsequent phases are optional.

More information:

A 1% cut-off was used, in terms of environmental relevance. In cut off were considered:

• the labels affixed to the products during shipment;

• general office consumption;

• packaging of packaging materials.

Specific energy consumption per production line was used in the study.

Maintenance and atmospheric emissions are also line specific.

<u>Name and contact information of LCA</u> <u>practitioner</u>: LCA study was carried out by e3 studio associato di consulenza, info@ecubo.it





## **Content declaration**

#### Aquafire

| Materials / chemical substances | %          | Environmental /<br>hazardous properties |
|---------------------------------|------------|-----------------------------------------|
| Portland cement                 | 23-33%     | H315, H318, H317,<br>H335               |
| EPS expanded polystyrene        | 0,6-1,0%   | -                                       |
| Sand                            | 63-77%     | -                                       |
| Glass fiber mesh                | 0,9 - 1,3% | -                                       |
| Chemical agent                  | 0,5-1,1%   | -                                       |

#### Supersil

| Materials / chemical substances | %          | Environmental /<br>hazardous properties |
|---------------------------------|------------|-----------------------------------------|
| Portland cement                 | 5-13%      | H315, H318, H317,<br>H335               |
| Expanded perlite                | 3-7%       | -                                       |
| Sand *                          | 1-8%       | -                                       |
| Glass fiber                     | 1,2-1,5%   | -                                       |
| Calcium-based mineral           | 65-75%     | -                                       |
| Glass fiber mesh                | 0,3-1,3 %  |                                         |
| Glass fiber matte               | 0,3-0,65 % |                                         |

\* the sand can be replaced by internal recovery aggregates

Both products don't contain substances listed in the "Candidate List of Substances of Very High Concern for Authorisation over 0,1%".

#### Packaging

<u>Consumer and distribution packaging:</u> the products are distributed on pallets, packaged with cardboard corners and metal straps.

#### **Recycled material**

In both products there is material deriving from the recycling of internal cuts from cutting, in a variable percentage between 6 and 12%.





## **Environmental performance: Aquafire**

## Potential environmental impact

| 1 m2 Aquafire                                                    | Unit            | A1       | A2       | A3       | Total    |
|------------------------------------------------------------------|-----------------|----------|----------|----------|----------|
| Global Warming potential (GWP)                                   | kg CO2 eq       | 4,77     | 0,08     | 0,05     | 4,91     |
| Formation potential of tropospheric ozone (POCP)                 | kg C2H4 eq      | 6,18E-04 | 1,30E-05 | 1,03E-05 | 6,42E-04 |
| Acidification potential (AP)                                     | kg SO2 eq       | 0,0129   | 0,0003   | 0,0001   | 0,0134   |
| Eutrophication potential (EP)                                    | kg PO4<br>eq    | 3,83E-03 | 7,25E-05 | 7,65E-05 | 3,98E-03 |
| Depletion potential of the<br>stratospheric ozone layer<br>(ODP) | kg CFC-11<br>eq | 2,16E-07 | 1,53E-08 | 3,25E-09 | 2,35E-07 |
| Abiotic depletion potential –<br>Elements                        | kg Sb eq        | 5,46E-06 | 1,50E-07 | 3,02E-07 | 5,91E-06 |
| Abiotic depletion potential –<br>Fossil resources                | MJ              | 36,6     | 1,3      | 0,4      | 38,3     |

#### Use of resources

| PARAMETER                       | R                        | UNIT                       | A1  | A2  | A3  | TOTAL A1-<br>A3 |
|---------------------------------|--------------------------|----------------------------|-----|-----|-----|-----------------|
| Primary<br>energy               | Use as energy carrier    | MJ, net calorific value    | 31  | 1   | 0   | 33              |
| resources –<br>Non<br>Renewable | Used as raw<br>materials | MJ, net calorific value    | 10  | 0   | 0   | 10              |
|                                 | TOTAL                    | MJ, net calorific value    | 41  | 1   | 0   | 43              |
| Primary<br>energy               | Use as energy carrier    | MJ, net calorific value    | 5   | 0   | 0   | 5               |
| resources –<br>Renewable        | Used as raw materials    | MJ, net calorific value    | 0   | 0   | 1   | 1               |
|                                 | TOTAL                    | MJ, net calorific value    | 5   | 0   | 1   | 6               |
| Secondary ma                    | aterial                  | kg                         | 0   | 0   | 0   | 0               |
| Renewable se                    | econdary fuels           | MJ, net<br>calorific value | 0   | 0   | 0   | 0               |
| Non-renewab                     | le secondary fuels       | MJ, net calorific value    | 0   | 0   | 0   | 0               |
| Net use of fre                  | sh water                 | m <sup>3</sup>             | 6,4 | 0,1 | 0,2 | 6,7             |

#### Waste production

| PARAMETER                    | UNIT | A1      | A2      | A3      | TOTAL A1-<br>A3 |
|------------------------------|------|---------|---------|---------|-----------------|
| Hazardous waste disposed     | kg   | 2,6E-05 | 7,4E-07 | 7,6E-07 | 2,8E-05         |
| Non-hazardous waste disposed | kg   | 0,17    | 0,11    | 0,01    | 0,29            |
| Radioactive waste disposed   | kg   | 1,2E-04 | 8,7E-06 | 1,8E-06 | 1,3E-04         |





## **Environmental performance: Supersil**

## Potential environmental impact

| 1 m2 Supersil 6 mm                                               | Unit            | A1       | A2       | A3       | Total    |
|------------------------------------------------------------------|-----------------|----------|----------|----------|----------|
| Global Warming potential (GWP)                                   | kg CO2 eq       | 2,04     | 0,09     | 0,63     | 2,76     |
| Formation potential of tropospheric ozone (POCP)                 | kg C2H4 eq      | 4,96E-04 | 1,47E-05 | 1,83E-05 | 5,28E-04 |
| Acidification potential (AP)                                     | kg SO2 eq       | 0,0092   | 0,0004   | 0,0002   | 0,0097   |
| Eutrophication potential (EP)                                    | kg PO4<br>eq    | 2,55E-03 | 8,22E-05 | 7,25E-05 | 2,70E-03 |
| Depletion potential of the<br>stratospheric ozone layer<br>(ODP) | kg CFC-11<br>eq | 2,31E-07 | 1,74E-08 | 2,02E-09 | 2,50E-07 |
| Abiotic depletion potential –<br>Elements                        | kg Sb eq        | 4,10E-06 | 1,71E-07 | 3,13E-07 | 4,59E-06 |
| Abiotic depletion potential –<br>Fossil resources                | MJ              | 28,3     | 1,4      | 0,2      | 29,9     |

| 1 m2 Supersil 9 mm                                               | Unit            | A1       | A2       | A3       | Total    |
|------------------------------------------------------------------|-----------------|----------|----------|----------|----------|
| Global Warming potential (GWP)                                   | kg CO2 eq       | 2,90     | 0,12     | 0,89     | 3,92     |
| Formation potential of tropospheric ozone (POCP)                 | kg C2H4 eq      | 6,80E-04 | 2,04E-05 | 2,56E-05 | 7,26E-04 |
| Acidification potential (AP)                                     | kg SO2 eq       | 0,0132   | 0,0005   | 0,0003   | 0,0139   |
| Eutrophication potential (EP)                                    | kg PO4<br>eq    | 3,58E-03 | 1,14E-04 | 9,81E-05 | 3,79E-03 |
| Depletion potential of the<br>stratospheric ozone layer<br>(ODP) | kg CFC-11<br>eq | 3,27E-07 | 2,42E-08 | 2,88E-09 | 3,54E-07 |
| Abiotic depletion potential –<br>Elements                        | kg Sb eq        | 5,51E-06 | 2,39E-07 | 3,27E-07 | 6,08E-06 |
| Abiotic depletion potential –<br>Fossil resources                | MJ              | 39,9     | 2,0      | 0,3      | 42,2     |

| 1 m2 Supersil 12mm                                               | Unit            | A1       | A2       | A3       | Total    |
|------------------------------------------------------------------|-----------------|----------|----------|----------|----------|
| Global Warming potential (GWP)                                   | kg CO2 eq       | 3,62     | 0,15     | 1,20     | 4,98     |
| Formation potential of tropospheric ozone (POCP)                 | kg C2H4 eq      | 8,10E-04 | 2,52E-05 | 3,35E-05 | 8,69E-04 |
| Acidification potential (AP)                                     | kg SO2 eq       | 0,0165   | 0,0006   | 0,0003   | 0,0174   |
| Eutrophication potential (EP)                                    | kg PO4<br>eq    | 4,39E-03 | 1,41E-04 | 1,24E-04 | 4,66E-03 |
| Depletion potential of the<br>stratospheric ozone layer<br>(ODP) | kg CFC-11<br>eq | 4,17E-07 | 2,98E-08 | 3,67E-09 | 4,50E-07 |
| Abiotic depletion potential –<br>Elements                        | kg Sb eq        | 6,48E-06 | 2,95E-07 | 3,40E-07 | 7,12E-06 |
| Abiotic depletion potential –<br>Fossil resources                | MJ              | 50,6     | 2,4      | 0,4      | 53,5     |





#### Use of resources

| Supersil 6 m                    | m                        | UNIT                       | A1  | A2  | A3  | TOTAL A1-<br>A3 |
|---------------------------------|--------------------------|----------------------------|-----|-----|-----|-----------------|
| Primary<br>energy               | Use as energy carrier    | MJ, net calorific value    | 31  | 1   | 0   | 32              |
| resources –<br>Non<br>Renewable | Used as raw<br>materials | MJ, net calorific value    | 0   | 0   | 0   | 0               |
|                                 | TOTAL                    | MJ, net calorific value    | 31  | 1   | 0   | 32              |
| Primary<br>energy               | Use as energy carrier    | MJ, net calorific value    | 6   | 0   | 0   | 6               |
| resources –<br>Renewable        | Used as raw materials    | MJ, net calorific value    | 0   | 0   | 0   | 0               |
|                                 | TOTAL                    | MJ, net calorific value    | 6   | 0   | 0   | 6               |
| Secondary m                     | aterial                  | kg                         | 0   | 0   | 0   | 0               |
| Renewable se                    | econdary fuels           | MJ, net<br>calorific value | 0   | 0   | 0   | 0               |
| Non-renewab                     | le secondary fuels       | MJ, net<br>calorific value | 0   | 0   | 0   | 0               |
| Net use of fre                  | sh water                 | m <sup>3</sup>             | 4,2 | 0,1 | 0,1 | 4,4             |

| Supersil 9 m                         | m                        | UNIT                       | A1  | A2  | A3  | TOTAL A1-<br>A3 |
|--------------------------------------|--------------------------|----------------------------|-----|-----|-----|-----------------|
| energy carrier<br>resources –<br>Non | Use as energy carrier    | MJ, net calorific value    | 43  | 2   | 0   | 46              |
|                                      | Used as raw materials    | MJ, net calorific value    | 0   | 0   | 0   | 0               |
|                                      | TOTAL                    | MJ, net calorific value    | 43  | 2   | 0   | 46              |
| energy<br>resources –<br>Renewable   | Use as energy carrier    | MJ, net calorific value    | 8   | 0   | 0   | 8               |
|                                      | Used as raw<br>materials | MJ, net calorific value    | 0   | 0   | 0   | 0               |
|                                      | TOTAL                    | MJ, net<br>calorific value | 8   | 0   | 0   | 8               |
| Secondary material                   |                          | kg                         | 0   | 0   | 0   | 0               |
| Renewable secondary fuels            |                          | MJ, net<br>calorific value | 0   | 0   | 0   | 0               |
| Non-renewable secondary fuels        |                          | MJ, net calorific value    | 0   | 0   | 0   | 0               |
| Net use of fresh water               |                          | m <sup>3</sup>             | 5,9 | 0,1 | 0,1 | 6,1             |





| Supersil 12 mm                                      |                          | UNIT                       | A1  | A2  | A3  | TOTAL A1-<br>A3 |
|-----------------------------------------------------|--------------------------|----------------------------|-----|-----|-----|-----------------|
| energy carrier<br>resources – Used as               | Use as energy carrier    | MJ, net calorific value    | 55  | 2   | 0   | 58              |
|                                                     | Used as raw<br>materials | MJ, net calorific value    | 0   | 0   | 0   | 0               |
|                                                     | TOTAL                    | MJ, net calorific value    | 55  | 2   | 0   | 58              |
| energy<br>resources –<br>Renewable<br>Used<br>mater | Use as energy carrier    | MJ, net calorific value    | 9   | 0   | 0   | 9               |
|                                                     | Used as raw materials    | MJ, net calorific value    | 0   | 0   | 1   | 1               |
|                                                     | TOTAL                    | MJ, net calorific value    | 9   | 0   | 1   | 9               |
| Secondary material                                  |                          | kg                         | 0   | 0   | 0   | 0               |
| Renewable secondary fuels                           |                          | MJ, net<br>calorific value | 0   | 0   | 0   | 0               |
| Non-renewable secondary fuels                       |                          | MJ, net calorific value    | 0   | 0   | 0   | 0               |
| Net use of fresh water                              |                          | m <sup>3</sup>             | 7,4 | 0,1 | 0,2 | 7,7             |

#### Waste production

| Supersil 6 mm                | UNIT | A1      | A2      | A3      | TOTAL A1-<br>A3 |
|------------------------------|------|---------|---------|---------|-----------------|
| Hazardous waste disposed     | kg   | 1,1E-02 | 8,4E-07 | 4,5E-07 | 1,1E-02         |
| Non-hazardous waste disposed | kg   | 0,12    | 0,12    | 0,01    | 0,25            |
| Radioactive waste disposed   | kg   | 6,4E-05 | 9,8E-06 | 1,2E-06 | 7,5E-05         |

| Supersil 9 mm                | UNIT | A1      | A2      | A3      | TOTAL A1-<br>A3 |
|------------------------------|------|---------|---------|---------|-----------------|
| Hazardous waste disposed     | kg   | 1,3E-02 | 1,2E-06 | 5,9E-07 | 1,3E-02         |
| Non-hazardous waste disposed | kg   | 0,17    | 0,17    | 0,01    | 0,35            |
| Radioactive waste disposed   | kg   | 9,0E-05 | 1,4E-05 | 1,6E-06 | 1,1E-04         |

| Supersil 12 mm               | UNIT | A1      | A2      | A3      | TOTAL A1-<br>A3 |
|------------------------------|------|---------|---------|---------|-----------------|
| Hazardous waste disposed     | kg   | 1,1E-02 | 1,4E-06 | 7,1E-07 | 1,1E-02         |
| Non-hazardous waste disposed | kg   | 0,21    | 0,21    | 0,01    | 0,42            |
| Radioactive waste disposed   | kg   | 1,1E-04 | 1,7E-05 | 2,0E-06 | 1,3E-04         |





## **Additional information**

Emission of Volatile Organic Compounds (VOC) using testing chamber method according to standard UNI EN ISO 16000-9:2006 and classification "Décret n° 2011-321 du 23 mars 2011" and "Arrêté del 19/04/2011)":

- Aquafire: Emission class A+ (TEST REPORT No. 340720 Istituto Giordano)
- Supersil: Emission class A+ (TEST REPORT No. 340041 Istituto Giordano)

### References

General Programme Instructions of the International EPD<sup>®</sup> System. Version 2.5., CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES, 2012:01, VERSION 2.3 Rapporto LCA Bifire rev.1, 09/05/2019 ecoinvent v. 3.5, November 2018, www.ecoinvent.org

