EPD

ERIFIED

ENVIRONMENTAL PRODUCT DECLARATION

 In accordance with EN 15804 and ISO 14025
CAVITYLITE

Date of publication: 2019-02-04 Validity: 5 years Valid until: 2024-01-31
Based on PCR 2012:01 Construction products and construction services v 2.3 (EN 15804 :A1) and its Sub-

PCR-I Thermal insulation products (EN 16783)
UN CPC CODE: 37990
Scope of the EPD®: South Africa

Registration number The International EPD ${ }^{\circledR}$ System: S-P-01500

General information

Manufacturer: Saint- Gobain ISOVER SA

Programme used: The International EPD ${ }^{\circledR}$ System. More information at www.environdec.com
EPD ${ }^{\circledR}$ registration number: S-P-01500
PCR identification : PCR 2012:01 Construction products and construction services v 2.3 (EN 15804:A1) and its Sub-PCR-I Thermal insulation products (EN 16783)
UN CPC CODE: 37990
Owner of the declaration: Saint- Gobain Isover South-Africa
EPD ${ }^{\circledR}$ prepared by: Sathia GOVENDER (Saint-Gobain ISOVER SA) , Yves COQUELET (SaintGobain LCA central TEAM)
Contact: Sathia Govender Email: Sathia.Govender@saint-gobain.com
Declaration issued: 2019-02-04, valid until: 2024-01-31

Product description

Product description and description of use:
This Environmental Product Declaration (EPD®) describes the environmental impacts of $1 \mathrm{~m}^{2}$ of mineral wool with a thermal resistance of $1.34 \mathrm{~K}^{*} \mathrm{~m}^{2 *} \mathrm{~W}^{-1}$.

The production site of Saint- Gobain Springs (SA) uses natural and abundant raw materials (sand) and recycled materials (cullet), using fusion and fiberising techniques to produce glass wool. The products obtained come in the form of a "mineral wool mat" consisting of a soft, airy structure

On Earth, naturally, the best insulator is dry immobile air at $20^{\circ} \mathrm{C}$: its thermal conductivity factor, expressed in λ, is $0.025 \mathrm{~W} /(\mathrm{m} . \mathrm{K})$ (watts per meter Kelvin degree). The thermal conductivity of glass wool is close to immobile air as its lambda varies from $0.032 \mathrm{~W} /(\mathrm{m} . \mathrm{K})$ for the most efficient to 0.043 $\mathrm{W} /(\mathrm{m} . \mathrm{K})$ to the least.

With its entangled structure, glass wool is a porous material that traps the air, making it one of the best insulating materials. The porous and elastic structure of the wool also absorbs noise in the air, knocks and offers acoustic correction inside premises. Mineral wool containing incombustible materials does not fuel fire or propagate flames.

Glass wool insulation (glass wool) is used in buildings as well as industrial facilities. It ensures a high level of comfort, lowers energy costs, minimizes carbon dioxide (CO2) emissions, prevents heat loss through pitched roofs, walls, floors, pipes and boilers, reduces noise pollution and protects homes and industrial facilities from the risk of fire.

Glass wool products last for the average building's lifetime (which is often set at 50 years as a default), or as long as the insulated building component is part of the building.

Technical data/physical characteristics (for a thickness of 51 mm):

Thermal resistance of the Product: $\mathbf{1 . 3 4} \mathrm{K} . \mathrm{m}^{2} . \mathrm{W}^{-1}$
The thermal conductivity of the Glass wool is: $0.038 \mathbf{W} /(\mathbf{m} \cdot \mathrm{K})$
Reaction to fire: Non combustible -tested to SANS 10177 part 5
Class A\&, S\& do according to EN 13823
Euroclass A1 - EN 13501-1

Description of the main components and/or materials for $1 \mathrm{~m}^{2}$ of product with a thermal resistance of $1.34 \mathrm{~K} . \mathrm{m}^{2} . \mathrm{W}^{-1}$ for the calculation of the EPD ${ }^{\oplus}$:

PARAMETER	VALUE
Quantity of wool for $\mathbf{1} \mathbf{m}^{\mathbf{2}}$ of product	0.714 Kg
Thickness of wool	51 mm
Surfacing	Glass tissue yellow 3.36 g
Packaging for the transportation and distribution	Polyethylene: $4.34 \mathrm{~g} / \mathrm{m}^{2}$
Product used for the Installation	None

During the life cycle of the product any hazardous substance listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorization" has been used in a percentage higher than 0.1% of the weight of the product.

The verifier and the program operator do not make any claim nor have any responsibility of the legality of the product.

[^0]
LCA calculation information

FUNCTIONAL UNIT	Providing a thermal insulation on $1 \mathrm{~m}^{2}$ of product with a thermal resistance of $1.34 \mathrm{~K} \cdot \mathrm{~m}^{2} \cdot \mathrm{~W}^{-1}$
SYSTEM BOUNDARIES	Cradle to Grave: Mandatory stages $=\mathrm{A} 1-3, \mathrm{~A} 4-5$, B1-7, C1-4. Optional stage $=\mathrm{D}$ not taken into account
REFERENCE SERVICE LIFE (RSL)	50 years
CUT-OFF RULES	In the case that there is not enough information, the process energy and materials representing less than 1% of the whole energy and mass used can be excluded (if they do not cause significant impacts). The addition of all the inputs and outputs excluded cannot be bigger than the 5% of the whole mass and energy used, as well of the emissions to environment occurred. Flows related to human activities such as employee transport are excluded. The construction of plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the production of the building product when compared at these systems lifetime level.
ALLOCATIONS	Allocation criteria are based on mass
GEOGRAPHICAL COVERAGE	South Africa SPRINGS production 2017
AND TIME PERIOD	South Africa SPRINGS transportation 2017

- "EPDs of construction products may be not comparable if they do not comply with EN 15804"
- "Environmental Product Declarations within the same product category from different programs may not be comparable"

Life cycle stages

Flow diagram of the Life Cycle

Product stage, A1-A3

Description of the stage: the product stage of the glass wool products is subdivided into 3 modules A1, A2 and A3 respectively "Raw material supply", "transport" and "manufacturing".

The aggregation of the modules A1, A2 and A3 is a possibility considered by the EN 15804 standard. This rule is applied in this EPD.

Description of the scenarios and other additional technical information:

A1, Raw materials supply

This module takes into account the extraction and processing of all raw materials and energy which occur upstream to the studied manufacturing process

Specifically, the raw material supply covers production of binder components and sourcing (quarry) of raw materials for fiber production, e.g. sand and borax for glass wool. Besides these raw materials, recycled materials (agglomerates) are also used as input.

A2, Transport to the manufacturer

The raw materials are transported to the manufacturing site. In our case, the modeling include: road (average values) of each raw material.

A3, Manufacturing

This module includes the manufacturing of the product and packaging. Specifically, it covers the manufacturing of glass, resin, glass wool (including the processes of fusion and fiberizing showed in the flow diagram), and the packaging.

Construction process stage, A4-A5

Description of the stage: the construction process is divided into 2 modules: A4, transport to the building site and A 5 , installation in the building.

A4, Transport to the building site: this module includes transport from the production gate to the building site.
Transport is calculated on the basis of a scenario with the parameters described in the following table.

PARAMETER

Fuel type and consumption of vehicle or vehicle type used for transport e.g. long distance truck, boat, etc. Distance

Capacity utilisation (including empty returns)
Bulk density of transported products*
Volume capacity utilisation factor

VALUE/DESCRIPTION

Average truck trailer with a 9t payload, diesel consumption 38 liters for 100 km

510 km
50% of the capacity in volume
100 \% of empty returns
$14 \mathrm{~kg} / \mathrm{m}^{3}$

1

A5, Installation in the building: this module includes:

No additional accessory was taken into account for the implementation phase insulation product.

PARAMETER	VALUE/DESCRIPTION
Wastage of materials on the building site before waste processing, generated by the product's installation (specified by type)	5%
Distance	25 km to landfill by truck
Output materials (specified by type) as results of waste processing at the building site e.g. of collection for recycling, for energy recovering, disposal	Packaging wastes are 100% collected and modeled as landfilled
(specified by route)	Glass wool losses are landfilled

Use stage (excluding potential savings), B1-B7

Description of the stage: the use stage is divided into the following modules:

- B1: Use
- B2: Maintenance
- B3: Repair
- B4: Replacement
- B5: Refurbishment
- B6: Operational energy use
- B7: Operational water use

Description of the scenarios and additional technical information:

Once installation is complete, no actions or technical operations are required during the use stages until the end of life stage. Therefore glass wool insulation products have no impact (excluding potential energy savings) on this stage.

End of Life Stage, C1-C4

Description of the stage: this stage includes the next modules:

C1, Deconstruction, demolition

The de-construction and/or dismantling of insulation products take part of the demolition of the entire building. In our case, the environmental impact is assumed to be very small and can be neglected

C2, Transport to waste processing

The model use for the transportation (see A4, transportation to the building site) is applied.
C3, Waste processing for reuse, recovery and/or recycling
The product is considered to be landfilled without reuse, recovery or recycling.

C4, Disposal

The glass wool is assumed to be 100% landfilled.
Description of the scenarios and additional technical information:
End of life:

PARAMETER	VALUE/DESCRIPTION

Reuse/recovery/recycling potential, D
Description of the stage: module D has not been taken into account.

LCA results

LCA model, aggregation of data and environmental impact are calculated from the TEAM software. CML 4.1 impact method has been used, together with TEAM and ECOINVENT databases to obtain the inventory of generic data.

Raw materials and energy consumption, as well as transport distances have been taken directly from the manufacturing plant (Production data according 2017 and transport data according 2017)

ENVIRONMENTAL IMPACTS																
Parameters		Produ ct stage	Construction stage		Use stage							End of life stage				2 3 0 0 0 0 0
		¢ ¢ ¢ ¢ ¢			¢ $\stackrel{9}{9}$ \sim						$\begin{aligned} & \text { B7 Operational } \\ & \text { water use } \end{aligned}$				$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$	
	Global Warming Potential (GWP) - kg CO2 equiv/FU	3,56E+00	6,80E-02	1,82E-01	0	0	0	0	0	0	0	0	3,31E-03	0	3,86E-03	MND
		The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas, carbon dioxide, which is assigned a value of 1 .														
	Ozone Depletion (ODP) kg CFC 11 equiv/FU	7,14E-08	1,24E-08	4,29E-09	0	0	0	0	0	0	0	0	6,03E-10	0	1,32E-09	MND
		Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules.														
	Acidification potential (AP) kg SO2 equiv/FU	4,53E-02	2,27E-04	2,28E-03	0	0	0	0	0	0	0	0	1,11E-05	0	2,91E-05	MND
		Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.														
	Eutrophication potential (EP) kg (PO4)3- equiv/FU	5,82E-03	5,01E-05	2,94E-04	0	0	0	0	0	0	0	0	2,44E-06	0	6,19E-06	MND
		Excessive enrichment of waters and continental surfaces with nutrients, and the associated adverse biological effects.														
	Photochemical ozone creation (POPC) kg Ethene equiv/FU	2,96E-03	6,51E-05	1,52E-04	0	0	0	0	0	0	0	0	3,17E-06	0	8,08E-06	MND
		Chemical reactions brought about by the light energy of the sun. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.														
5%	Abiotic depletion potential for non-fossil resources (ADPelements) - $k g$ Sb equiv/FU	4,34E-04	2,69E-09	2,17E-05	0	0	0	0	0	0	0	0	1,31E-10	0	1,95E-10	MND
	Abiotic depletion potential for fossil resources (ADP-fossil fuels) - MJ/FU	6,06E+01	1,03E+00	3,09E+00	0	0	0	0	0	0	0	0	4,99E-02	0	1,09E-01	MND
		Consumption of non-renewable resources, thereby lowering their availability for future generations.														

RESOURCE USE

WASTE CATEGORIES															
Parameters	Product stage	Construction process stage		Use stage							End-of-life stage				
				$\begin{gathered} \text { © } \\ \underset{\sim}{0} \\ \hline \end{gathered}$	N										
Hazardous waste disposed kg/FU	3,62E-02	6,67E-04	1,85E-03	0	0	0	0	0	0	0	0	3,25E-05	0	5,58E-05	MND
Non-hazardous waste disposed kg/FU	3,27E-01	5,35E-02	1,00E-01	0	0	0	0	0	0	0	0	2,60E-03	0	7,17E-01	MND
Radioactive waste disposed kg/FU	3,08E-05	6,97E-06	2,01E-06	0	0	0	0	0	0	0	0	3,39E-07	0	7,23E-07	MND

OTHER OUTPUT FLOWS															
	Product stage	Construction process stage		Use stage							End-of-life stage				
Parameters	$\begin{aligned} & \text { § } \\ & \text { § } \\ & \text { ¿ } \end{aligned}$	t 0 0 0 $\frac{1}{2}$ $\frac{10}{2}$ 		$\stackrel{8}{3}$ $\stackrel{0}{0}$	($\begin{aligned} & \stackrel{2}{\%} \\ & \frac{\circ}{\circ} \\ & \frac{1}{1} \\ & \infty \\ & \hline 0 \end{aligned}$									
Components for re-use kg/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
Materials for recycling kg/FU	7,58E-03	0	3,79E-04	0	0	0	0	0	0	0	0	0	0	0	MND
Materials for energy recovery kg/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MND
Exported energy MJ/FU	6,81E-06	0	3,41E-07	0	0	0	0	0	0	0	0	0	0	0	MND

LCA interpretation

[1] This indicator corresponds to the abiotic depletion potential of fossil resources.
[2] This indicator corresponds to the total use of primary energy.
[3] This indicator corresponds to the use of net fresh water.
[4] This indicator corresponds to the sum of hazardous, non-hazardous and radioactive waste disposed

Global Warming Potential (Climate Change) (GWP)

When analyzing the above figure for GWP, it can clearly be seen that the majority of contribution to this environmental impact is from the production modules (A1 - A3). This is primarily because the sources of greenhouse gas emissions are predominant in this part of the life cycle. CO2 is generated upstream from the production of electricity and is also released on site by the combustion of natural gas. We can see that other sections of the life cycle also contribute to the GWP; however the production modules contribute to over 80% of the contribution. Combustion of fuel in transport vehicles will generate the second highest percentage of greenhouse gas emissions.

Non-renewable resources consumptions

We can see that the consumption of non - renewable resources is once more found to have the highest value in the production modules. This is because a large quantity of natural gas is consumed within the factory, and non - renewable fuels such as natural gas and coal are used to generate the large amount of electricity we use. The contribution to this impact from the other modules is very small and primarily due to the non - renewable resources consumed during transportation.

Energy Consumptions

As we can see, modules A1 - A3 have the highest contribution to total energy consumption. Energy in the form of electricity and natural gas is consumed in a vast quantity during the manufacture of glass mineral wool so we would expect the production modules to contribute the most to this impact category.

Water Consumption

As we don't use water in any of the other modules (A4 - A5, B1 - B7, C1 - C4), we can see that there is no contribution to water consumption. For the production phase, water is used within the manufacturing facility and therefore we see the highest contribution here. However, we recycle a lot of the water on site so the contribution is still relatively low.

Waste Production

Waste production does not follow the same trend as the above environmental impacts. The largest contributor is the end of life module. This is because the entire product is sent to landfill once it reaches the end of life state. However, there is a still an impact associated with the production module since we do generate waste on site. The very small impact associated with installation is due to the loss rate of product during implementation.

ANNEX Influence of thicknesses

Influence of particular thicknesses

This EPD ${ }^{\circledR}$ includes the range of thicknesses between 51 mm and 102 mm , for every thickness, using a multiplication factor in order to obtain the environmental performance of every thickness. In order to calculate the multiplication factors, a reference unit has been selected (value of $\mathrm{R}=1.34 \mathrm{~m}^{2} . \mathrm{K} / \mathrm{W}$ for 51 mm). All the results refer to 51 mm of thickness.

The following table shows the multiplication factors for each individual thickness in the product family. In order to determine the environmental impacts associated with a determinate product thickness, the results indicated in this EPD® must be multiplied by the corresponding multiplication factor. To obtain this factor, a conservative principle has been followed, being the real impact of the product slightly lower than that indicated in the table.

PRODUCT THICKNESS (MM)	MULTIPLICATION FACTOR
51	1
63	1.23
102	1.99

Additional information

TYPE OF INFORMATION	DESCRIPTION
Location	Representative of average production in South Africa(2015)
Geographical representativeness description	Split of energy sources in Italia - Coal and peat: 80.9\% - Fuel oil: 0.1\% - Gas: 0 \% - Nuclear: 4.3\% - Hydro: 1.3 \% - Wind: 0.8\% - Solar PV: 0.8\% Import and Distribution losses: 4.6 \% et 7.0 \%
Reference year	2015
Type of data set	Cradle to gate
Source	IEA

South Africa

Bibliography

- ISO 14040:2006: Environmental Management-Life Cycle Assessment-Principles and framework.
- ISO 14044:2006: Environmental Management-Life Cycle Assessment-Requirements and guidelines.
- ISO 14025:2006: Environmental labels and declarations-Type III Environmental DeclarationsPrinciples and procedures.
- PCR Multiple UN CPC codes Insulation materials (2014:13) version 1.1
- UNE-EN 15804:2012+A1:2013: Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products
- General Programme Instructions for the International EPD®System, version 2.5

[^0]: ${ }^{1}$ http://echa.europa.eu/chem_data/authorisation_process/candidate_list_table_en.asp

