

DICHIARAZIONE AMBIENTALE DI PRODOTTO

METAFORA (in alluminio anodizzato)

Programma: The International EPD® System Operatore del Programma: EPD International AB

PCR CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES, PCR 2019:14, v 1.3.2,

C-PCR-007 VERSION: 2020-04-09

CPC: 4212

Geographical scope: Globale N. di registrazione: S-P-13382 Data di approvazione: 2024-04-23 Valida fino al: 2029-04-22 Data di pubblicazione: 03/05/2024

In accordo alla ISO 14025:2006 e alla EN 15804:2012+A2:2019

"Un EPD dovrebbe fornire informazioni aggiornate e potrebbe essere aggiornato se le condizioni cambiano. La validità dichiarata è pertanto soggetta alla continua registrazione e pubblicazione su www.environdec.com."

1 INTRODUZIONE

Le Dichiarazioni Ambientali di Tipo III, contengono informazioni verificabili e accurate sulle prestazioni ambientali di un prodotto, quantificate sulla base di una valutazione di impatto del ciclo di vita. Il loro obiettivo è quello di produrre informazioni attendibili espresse su una base comune che consentano un confronto delle performance ambientali tra i prodotti che svolgono una stessa funzione. In quest'ottica di sostenibilità dei prodotti le Dichiarazioni Ambientali di Tipo III sono sviluppate in conformità ai requisiti e alle prescrizioni dettati dalla norma volontaria UNI EN ISO 14025:2010 e per garantire che gli studi LCA siano condotti in modo coerente per tutti i prodotti rientranti all'interno della stessa categoria, è richiesto che vengano rispettate regole e metodologie precise. Tali regole vengono indicate dalla PCR – Product Category Rules – le quali formulano precisazioni riguardo lo svolgimento di un'analisi di ciclo di vita per una specifica categoria di prodotto assicurando l'armonia e la confrontabilità dei risultati.

2 INFORMAZIONI SULL'AZIENDA E SUL PRODOTTO

2.1 L'AZIENDA¹

Adotta è nata agli inizi del 2000. Oggi siamo produttori, innovatori e leader nel settore delle pareti divisorie per ufficio. Durante i primi 15 anni di esistenza, abbiamo prodotto, gestito ed installato con successo più di 700 progetti in tutto il mondo. I nostri progetti variano dalle piccole configurazioni allo sviluppo di più piani in grandi complessi ed edifici in costruzione. I nostri prodotti installati oggi in più di 20 paesi nel mondo sono testimoni dell'abilità di Adotta nell'operare in contesti internazionale. I nostri clienti vanno dai piccoli business alle grandi corporate multinazionali, dalle banche di investimento all'industria dell'intrattenimento, fino ad architetti, progettisti e professionisti, accumunati da un'attento interesse al design degli spazi La Mission di Adotta è di realizzare pareti per ufficio che esaltano l'architettura d'interni, attraverso un design unico ed una costante innovazione, conferendo valore aggiunto sostenibile agli ambienti di lavoro contemporanei.

2.2 IL PRODOTTO

Parete divisoria in vetro per uffici con struttura di alluminio. L'azienda in merito ai prodotti considerati si appoggia a terzisti selezionati che rispettano gli elevati standard qualitativi imposti dell'azienda.

	Composizione del prodotto in massa							
	Profilo in alluminio	4,0234						
	Lastra di vetro	29,0547						
PRODOTTO	Guarnizioni	0,1427						
PRODUTO	Maniglia/maniglione	0,2076						
	Cerniere	0,3623						
	Viteria	0,2416						
	Cassa/gabbia in legno	11,6867						
PACKAGING	Polistirolo	0,1						
PACKAGING	Reggia in plastica	0,1						
	Cartone	0,3						

¹ Proprietario Adotta Italia srl Sede Legale: Via delle Pastorelle, 10, 36016 Thiene VI

2

Carbonio Biogenico (C) Prodotto	0,00E+01
Carbonio Biogenico (C) Packaging	2,14E+01

Si specifica che le componenti in vetro hanno spessore di 12 mm e che le configurazioni di prodotto sono basate sul seguente rendering e sul caso peggiorativo (alluminio anodizzato). Le dimensioni sono riportate nei rendering di Figura 1.

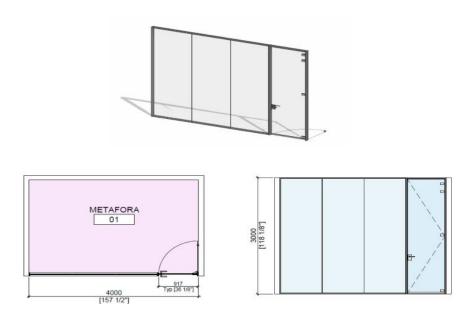


Figura 1

3 INFORMAZIONI LCA

3.1 L'UNITÀ DICHIARATA

In accordo con le direttive della norma di riferimento e la regola di prodotto si considera come unità dichiarata: n 1 m2 di prodotto (comprensivo di packaging e incluso della materia extra fornito ai cantieri (A5))

3.2 REFERENCE SERVICE LIFE

Con riferimento a quanto riportato i dalla PCR 2019:14 v 1.3.2 par 4.2: For a "cradle to gate with options" EPD, the declaration of the RSL is only possible if B1-B5 are included".

3.3 CONFINI TEMPORALI

I confini temporali comprendono il periodo che va da Gennaio 2022 - Dicembre 2022 un arco temporale considerato come rappresentativo delle attività dell'azienda. Questi sono stati scelti data la più completa disponibilità di informazioni relative all'analisi.

3.4 CONFINI DEL SISTEMA

In accordo con la norma di riferimento UNI EN 15804 e la PCR seguita, la valutazione di impatto ambientale del ciclo di vita è tipo "from cradle to gate with modules C1-C4 and module D"

	PRO	DUCT ST	AGE	ON PR	TRUCTI OCESS AGE			U	ISE STAG	iΕ			Eſ	ND OF LI	FE STAG	iΕ	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Decostrunction, demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
	A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4	D
	х	Х	х	ND	ND	ND	ND	ND	ND	ND	ND	ND	Х	х	х	х	Х
Geography	GLO	GLO	IT	-	-	-	-	-	-	-	-	-	-	IT	IT	IT	ІТ
Specific data used		2,9%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation - product	no	ot releva	nt	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – site	no	ot releva	nt	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Figura 2: Confini di sistema considerati nello studio. (ND= Module not declared); L'impatto sul clima della fonte di energia dietro l'elettricità nel processo di produzione in A3 è 0,585 kg/ CO2 eq./kWh (utilizzando l'indicatore GWP-GHG)

Tabella 1

MODULO	INDICATORE	
	Materia prima	1
A1 – Raw material supply	Consumo energia elettrica	UPSTREAM
A2 – Transport	Trasporto materia prima Trasporti interni	UPS
	Materia (imballaggi)	
A3 - Manufacturing	Trasporto rifiuti generati	CORE
	Trattamento rifiuti generati	
C1 - De-construction demolition	Consumi legati alla demolizioni	
C2 - Transport	Trasporto dei rifiuti	END OF LIFE
C3 - Waste processing	Trattamento dei rifiuti	END C
C4 - Disposal	Smaltimento	

All'interno dello studio non sono stati contabilizzati le emissioni poiché l'azienda non è soggetta a autorizzazioni e non fa uso di gas refrigeranti. Per la fase "core" non sono stati conteggiati i consumi termici e idrici poiché non propedeutici alla lavorazione dei prodotti oggetto di studio.

Altre esclusioni hanno riguardato i carichi ambientali dei macchinari impiegati in Adotta; prodotti ausiliari e prodotti usati nella ricerca e sviluppo. Viene comunque precisato che gli scenari adottati per la modellazione dei moduli C1, C2, C3, C4 e D sono stati considerati nel modo seguente:

- Gli impatti associati alla demolizione (C1) sono assunti trascurabili. Le eventuali operazioni di rimozione del manufatto non richiedono l'impiego di energia elettrica o altri input. Generalmente la rimozione se necessaria può essere effettuata manualmente.
- Si assume una distanza pari a 51.3 km per la fase C2
- Inoltre per la definizione dei moduli C3/4 e D sono state applicate le informazioni recuperabili del seguente sito (https://www.isprambiente.gov.it). Si ipotizzano quindi le seguenti percentuali: Recupero - 77,125%;
 Smaltimento 22,875 %

3.5 SCHEMA DI SISTEMA

Per ciascun modulo informativo sono stati indagati gli indicatori di prestazione ambientale caratteristici. Nella scelta dei dati da utilizzare per lo studio si è cercato di privilegiare dati primari catalogabili dall'azienda. Tali dati costituiscono la fonte primaria di informazioni per l'analisi di inventario. Quest'ultimi sono raggruppabili secondo indicatori di prestazione ambientale, ai quali successivamente verranno riferiti i risultati delle performance ambientali. Sulla base di tali indicatori è stato elaborato il modello software e l'analisi dell'inventario si è quindi sviluppata secondo macro consumi riferiti all'unità dichiarata che caratterizza lo studio. Il processo produttivo può essere riassunto nei seguenti punti:

Tabella 2

Nome processo unitario	Descrizione del processo unitario
Progettazione	Il nostro ufficio R&D progetta e sviluppa una matrice
Estrusione	Forzatura e compressione della billetta di lega di alluminio oppurtanemente preriscaldata al fine di ottenere la sagoma desiderata
Lavorazioni sul	
grezzo	Il profilo in alluminio viene rivestito con diverse tipologie di tranciato a seconda della richiesta
Finitura	Il profilo rivestito viene trattato in base all'esigenza di commessa con processo di impiallaccio e verniciatura
Taglio	Il profilo rivestito viene tagliato internamente a misura per commessa
Assemblaggio con vetro	Il profilo rivestito, se richiesto, viene assemblato con vetri (porta)
Acquisto	
componenti	Acquisto dei componenti a disegno
Finitura	L'Hardware in alluminio (cerniere, chiudiporta ecc) viene trattato in base all'esigenza di commessa con processo di anodizzazione o verniciatura alle polveri
Assemblaggio dei componenti	L'Hardware trattato viene assemblato
Acquisto	Il materiale viene ordinato e acquistato presso segherie di fiducia
Lavorazione	Il materiale viene tagliato e lavorato a seconda della commessa (porta, pannelli, moduli ecc)
Acquisto	Acquisto lastre in vetro su misura
Lavorazione	La lastra in vetro viene lavorata in base all'eigenza di commessa (tempera, serigrafia, incollaggio)
Controllo qualità	Il materiale viene controllato se tutto OK
Imballaggio	Acquisto materiale generico di imballo
Imballaggio	Imballaggio materiale
Spedizione	Materiale viene spedito tramite corriere, via nave, via aerea, via gomma

3.6 DATABASE E SOFTWARE

Per la elaborazione dell'inventario e per il calcolo degli eco-profili è stato impiegato il software di calcolo SimaPro (SimaPro 9.4.0.2) e i database selezionati: "ECOINVENT 3.8".

4 PRESTAZIONI AMBIENTALI

4.1 POTENZIALI IMPATTI AMBIENTALI

Si riportano qui di seguito i risultati dell'ecoprofilo ottenuti dall'analisi del ciclo di vita dei prodotti oggetto di dichiarazione ambientale, lungo le categorie di impatto in conformità alla UNI EN 15804.

Tabella 3: Ripartizione dei risultati della valutazione dell'impatto per indicatori di prestazione ambientale con riferimento all'unità dichiarata lungo i moduli informativi indagati

CATEGORIA D'IMPATTO	UNITÀ	A1-A3	C1	C2	C3	C4	D
Climate change	kg CO2 eq	1,40E+02	0,00E+00	2,83E-01	9,15E-01	3,30E-02	-9,46E+01
Climate change - Fossil	kg CO2 eq	1,39E+02	0,00E+00	2,82E-01	6,66E-01	3,30E-02	-1,34E+02
Climate change - Biogenic	kg CO2 eq	6,13E-01	0,00E+00	7,47E-04	2,48E-01	3,70E-05	-5,74E-01
Climate change - Land use and LU change	kg CO2 eq	3,10E-01	0,00E+00	1,11E-04	6,04E-04	7,42E-06	-3,00E-01
Ozone depletion	kg CFC11 eq	7,69E-06	0,00E+00	6,54E-08	7,90E-08	1,63E-08	-7,65E-06
Acidification	mol H+ eq	1,00E+00	0,00E+00	1,15E-03	3,96E-03	3,24E-04	-9,84E-01
Eutrophication, freshwater***	kg P eq	3,56E-02	0,00E+00	1,82E-05	2,34E-04	1,88E-06	-3,54E-02
Eutrophication, marine	kg N eq	1,74E-01	0,00E+00	3,45E-04	1,42E-03	1,22E-04	-1,67E-01
Eutrophication, terrestrial	mol N eq	1,88E+00	0,00E+00	3,77E-03	1,18E-02	1,34E-03	-1,81E+00
Photochemical ozone formation	kg NMVOC eq	4,87E-01	0,00E+00	9,35E-04	2,82E-03	3,26E-04	-4,70E-01
Resource use, minerals and metals*	kg Sb eq	5,54E-04	0,00E+00	9,82E-07	1,94E-05	6,44E-08	-5,51E-04
Resource use, fossils*	MJ	1,37E+03	0,00E+00	4,18E+00	6,62E+00	1,05E+00	-1,31E+03
Water use*	m3 depriv.	4,61E+01	0,00E+00	1,28E-02	9,18E-02	3,38E-03	-3,30E+01
Particulate matter	disease inc.	1,67E-05	0,00E+00	1,96E-08	5,47E-08	7,02E-09	-1,37E-05
Ionising radiation**	kBq U-235 eq	5,21E+00	0,00E+00	2,19E-02	9,01E-02	5,14E-03	-5,00E+00
Ecotoxicity, freshwater*	CTUe	3,23E+03	0,00E+00	3,33E+00	4,50E+01	5,91E-01	-3,20E+03
Human toxicity, non- cancer*	CTUh	2,62E-06	0,00E+00	3,48E-09	1,96E-08	2,77E-10	-2,59E-06
Human toxicity, cancer*	CTUh	1,44E-07	0,00E+00	1,08E-10	1,02E-09	1,35E-11	-1,43E-07
Land use*	Pt	4,61E+02	0,00E+00	2,93E+00	2,56E+01	2,37E+00	-4,32E+02

^{*} I risultati di questo indicatore di impatto ambientale devono essere utilizzati con cautela in quanto le incertezze su tali risultati sono elevate o causa della limitata esperienza con tale indicatore (cfr UNI EN 15804:2019); ** Questa categoria di impatto si occupa principalmente dell'eventuale impatto delle radiazioni ionizzanti a basse dosi sulla umana del ciclo del combustibile nucleare. Non prende in considerazione gli effetti dovuti a possibili incidenti nucleari, all'esposizione professionale o allo smaltimento di scorie radioattive in impianti sotterranei. Anche le potenziali radiazioni ionizzanti proveniente dal suolo, dal radon e da alcuni materiali da costruzione non sono misurate da questo indicatore; ***i risultati in kg PO4 eq. si ottiene moltiplicando i risultati in kg P eq. con un fattore di 3.07

Tabella 4: Ripartizione dei risultati dell'uso di risorse con riferimento all'unità dichiarata lungo i moduli informativi indagati

PARAM	ETRI	UNITÀ	A1-A3	C1	C2	C3	C4	D
Risorse	Utilizzate come vettore di energia	MJ	9,85E+01	0,00E+00	6,02E-02	7,79E-01	2,17E-02	-1,29E+02
energetiche primarie - Rinnovabili	Utilizzato come materie prime	MJ	3,37E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	TOTALE	MJ	1,32E+02	0,00E+00	6,02E-02	7,79E-01	2,17E-02	-1,29E+02
Risorse	Utilizzate come vettore di energia	MJ	1,36E+03	0,00E+00	4,27E+00	7,86E+00	1,07E+00	-1,38E+03
energetiche primarie - Non rinnovabili	Utilizzato come materie prime	MJ	7,16E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	TOTALE	MJ	1,43E+03	0,00E+00	4,27E+00	7,86E+00	1,07E+00	-1,38E+03
Materiale se	condario	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Combustibili rinnova		MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Combustibili se rinnova		MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Uso netto di acqua dolce		m³	6,81E+00	0,00E+00	4,45E-04	3,83E-03	1,28E-03	-3,66E+00

Tabella 5: Ripartizione dei rifiuti con riferimento all'unità dichiarata lungo i moduli informativi indagati

PARAMETRI	UNITÀ	A1-A3	C1	C2	C3	C4	D
Rifiuti pericolosi smaltiti	kg	1,23E-03	0,00E+00	1,12E-05	2,06E-05	1,18E-06	-1,22E-03
Rifiuti non pericolosi smaltiti	kg	2,35E+01	0,00E+00	2,20E-01	5,15E-01	7,77E+00	-2,34E+01
Rifiuti radioattivi smaltiti	kg	5,84E-03	0,00E+00	2,89E-05	4,93E-05	7,19E-06	-4,40E-03

Tabella 6: Ripartizione dei flussi di output con riferimento all'unità dichiarata lungo i moduli informativi indagati

PARAMETRI	UNITÀ	A1-A3	C1	C2	C3	C4	D
CRU	Kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	Kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EET	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

Tabella 7: L'indicatore include tutti i gas a effetto serra inclusi nel GWP totale, ma esclude l'assorbimento e le emissioni di anidride carbonica biogenica e il carbonio biogenico immagazzinato nel prodotto. Questo indicatore è quindi pari all'indicatore GWP originariamente definito nella EN 15804: 2012 + A1: 2013

Potential environmental impacts – additional indicator	UNITÀ	A1-A3	C1	C2	C3	C4	D
GWP - GHG	Kg CO2 eq	1,36E+02	0,00E+00	2,80E-01	8,46E-01	3,25E-02	-1,31E+02

4 ALTRE INFORMAZIONI AMBIENTALI

Nessuna delle sostanze presenti nell'attuale versione della "Candidate List" regolamento Europeo 1907/2006/CE (REACH Registration, Evaluation, Authorisation and Restriction of Chemicals) è presente in concentrazione superiore allo 0,1% in peso negli articoli commercializzati.

5 RIFERIMENTI

PCR CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES, PCR 2019:14, v 1.3.2,

C-PCR-007 VERSION: 2020-04-09

UNI EN 15804 – Sostenibilità delle costruzioni - Dichiarazioni ambientali di prodotto - Regole quadro di sviluppo per categoria di prodotto.

UNI EN ISO 14025:2010 – Etichette e dichiarazioni ambientali - Dichiarazioni ambientali di Tipo III - Principi e procedure.

UNI EN ISO 14040:2021 – Gestione ambientale - Valutazione del ciclo di vita - Principi e quadro di riferimento.

UNI EN ISO 14044:2021 – Gestione ambientale - Valutazione del ciclo di vita - Requisiti e linee guida.

GENERAL PROGRAMME INSTRUCTIONS FOR THE INTERNATIONAL EPD® SYSTEM VERSION

Report LCA_Adotta_REV2

INFORMAZIONI SUL PROGRAMMA

Programma:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden www.environdec.com info@environdec.com						
Product category rules (PCR): PCR CONS C-PCR-007 VERSION: 2020-04-09	TRUCTION PRODUCTS AND CONSTRUCTION SERVICES, PCR 2019:14, v 1.3.2,						
NUMERO REGISTRAZIONE EPD: S-P-133							
www.environdec.com/TC for a list of m	otta da: The Technical Committee of the International EPD® System. See embers. Review chair: Claudia A. Peña, University of Concepción, Chile. The secretariat www.environdec.com/contact.						
Verifica indipendente da parte di terzi c ☑ Esterna ☐ Interna ☐ EPD process certification ☑ EPD verification	della dichiarazione e dei dati, secondo ISO 14025						
Third party verifier: DNV Business Assurance Italy Srl							
Accreditato o approvato da: Accredia							
Procedure for follow-up of data during EPD validity involves third party verifier:							
X Yes □ No							

The International EPD® System

Il proprietario di EPD ha la sola proprietà e responsabilità per l'EPD. Le EPD all'interno della stessa categoria di prodotti ma provenienti da programmi diversi potrebbero non essere comparabili. Le EPD dei prodotti da costruzione potrebbero non essere comparabili se non conformi alla EN 15804.

Proprietario EPD	ADOTTA ITALIA SRL	ADOTTA DENTRO L'ARCHITETTURA	https://www.adottaitalia.com/it/
Supporto Tecnico	Documento sviluppato da EcamRicert Srl	Ecam Ricert NutriSciences	https://ecamricert.com/