

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN 15804+A1 and ISO 14025

Outdoor gypsum board X-terium

Date of issue: 19/07/2021 Validity: 5 years Valid until: 18/07/2026 Version: 1 Scope of the EPD®: Mexico

The environmental impacts of this product have been assessed over its whole life cycle. Its Environmental Product Declaration has been verified by an independent third party.

Registration number The International EPD® System: S-P-01664

General information

Manufacturer: Saint-Gobain Plaka S.A de C.V, Avenida La Noria No. 123 Santa Rosa Jauregui Insdustrial Park, Querétaro 76220 Querétaro, Mexico

Programme used: International EPD System <u>www.environdec.com/</u>, EPD registered through the fully aligned regional programme/hub: EPD Latin America <u>www.epd-americalatina.com/</u> <u>www.epdlatinamerica.com</u> **Programme operator:**

EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden

EPD Latin America Chile: Alonso de Ercilla 2996, Ñuñoa, Santiago Chile. Mexico: Av. Convento de Actopan 24 Int. 7A, Colonia Jardines de Santa Mónica, C.P. 54050 Tlalnepantla de Baz, Estado de México, México,

EPD registration number/declaration number: S-P-01664

PCR identification: EN 15804 Sustainability of construction works – Environmental product declaration - core rules for the product category of construction product and The International EPD® System PCR 2012:01 version 2.33 for Construction products and Construction with reference to the Saint Gobain Environmental Product Declaration Methodological Guide for Construction Products

Owner of the declaration: Saint-Gobain Plaka S.A. de C.V.

Product / product family name and manufacturer represented: X-terium 12.7, outdoor gypsum board. **Declaration issued:** 2021-07-19

Valid until: 2026-07-18

Demonstration of verification: an independent verification of the declaration was made, according to ISO 14025:2010. This verification was external and conducted by the following third party: Andrew NORTON, Renuables, based on the PCR mentioned above.

EPD Prepared by: Rosa Mondragon (Saint-Gobain Plaka) and Patricia Jimenez Diaz (Saint-Gobain) **Contact:** Rosa Mondragon (<u>Rosa.Mondragon@saint-gobain.com</u>) and Patricia Jimenez Diaz (<u>Patricia.JimenezDiaz@saint-gobain.com</u>)

The declared unit is 1 m² of X-terium gypsum board.

Declaration of Hazardous substances: (Candidate list of Substances of Very High Concern): none

Geographical scope of the EPD®: Mexico

EPDs of construction products may not be comparable if they do not comply with EN 15804.

CE	EN standard EN 15804 serves as the core PCR ^a
PCR:	PCR 2012:01 Construction products and Construction services, Version 2.33
PCR review was conducted by:	The Technical Committee of the International EPD® System. Chair: Massimo Marino. Contact via info@environdec.com
Independent ver	rification of the declaration, according to EN ISO 14025:2010 Internal □ External ⊠
Third party verifier:	Andrew Norton , Renuables http://renuables.co.uk
Accredited or approved by	The International EPD System

Product description

Product description and use:

This Environmental Product Declaration (EPD®) covers outdoor gypsum board, X-terium 12.7.

X-terium is a non-combustible synthetic gypsum board specially formulated to resist moisture, fungal and algae growth, coated with a fiber glass mat to withstand all weather conditions.

The systems with X-terium for walls, soffits and façade elements provide advantages such as quick and easy installation and light weight for exterior applications.

Gypsum boards are made of plaster and additive with special high-strength paperboard as described in the table below:

Ingredients	X-terium 12.7
Calcium Sulphate dihydrate	>85%
Fiber Glass	>10%
Additives	>5%

Description of the main components and/or materials for 1 m² of gypsum board for the calculation of the EPD®:

PARAMETER	VALUE (expressed per declared unit)
Quantity for 1 m ² of product	9.5 kg
Thickness	12.7 mm
Surfacing	Glass mesh: 780 g/m ²
Packaging for the transportation and distribution	Gypsum culls: 0.08 kg
Product used for the Installation	Jointing compound: 3.33 kg/ m ² Jointing tape: 1.1 kg/m ² Screws: 0.03 kg/ m ² Water: 0.83 l/m ²

During the life cycle of the product any hazardous substance listed in the "Candidate List of Substances of Very High Concern (SVHC) for authorization" has not been used in a percentage higher than 0,1% of the weight of the product.

The verifier and the programme operator do not make any claim nor have any responsibility of the legality of the product.

LCA calculation information

EPD TYPE DECLARED	Cradle to gate with options
DECLARED UNIT	The declared unit is 1 m ² of X-terium board
SYSTEM BOUNDARIES	Cradle to gate with options: stages A1 – A3, A4 – A5, B1 – B7, C1 – C4
REFERENCE SERVICE LIFE (RSL)	50 years By default, it corresponds to Standards building design life and value is included in Appendix III of Saint-Gobain Environmental Product Declaration Methodological Guide for Construction Products
CUT-OFF RULES	Life Cycle Inventory data for a minimum of 99% of total inflows to the upstream and core module shall be included
ALLOCATIONS	Production data. Recycling, energy and waste data have been calculated on a mass basis.
GEOGRAPHICAL COVERAGE AND TIME PERIOD	Scope includes: Mexico Primary data is collected from one production site at Saint-Gobain Plaka S.A de C.V Data collected for the year 2020 Background data: Ecoinvent (v3.1 2013 and 3.5 2015) and GaBi (SP37 2019)
PRODUCT CPC CODE	37530 Articles of plaster or of composition based on plaster

According to EN 15804, EPDs of construction products may not be comparable if they do not comply with this standard.

According to ISO 21930, EPDs might not be comparable if they are from different programmes.

Life cycle stages

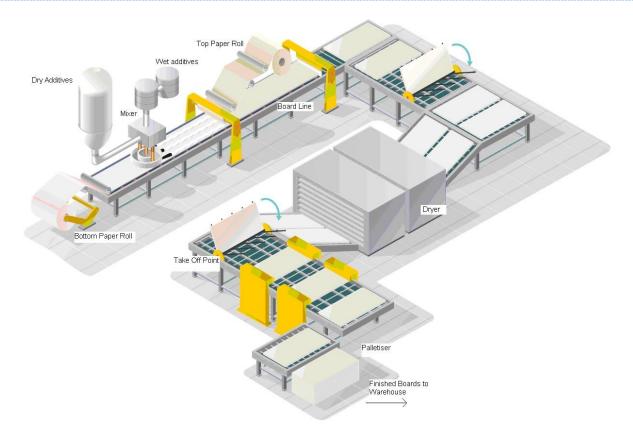
Flow diagram of the Life Cycle

Product stage, A1-A3

Description of the stage: the product stage of plaster products is subdivided into 3 modules A1, A2 and A3 respectively "Raw material supply", "transport to manufacturer" and "manufacturing".

A1, raw material supply.

This includes the extraction and processing of all raw materials and energy which occur upstream from the manufacturing process.


A2, transport to the manufacturer.

The raw materials are transported to the manufacturing site. The modelling includes road, boat and/or train transportations of each raw material.

A3, manufacturing.

This module includes the manufacture of products and the manufacture of packaging. The production of packaging material is taken into account at this stage. The processing of any waste arising from this stage is also included.

Manufacturing process flow diagram

Construction process stage, A4-A5

Description of the stage: the construction process is divided into 2 modules: A4, transport to the building site and A5, installation in the building

A4, transport to the building site.

This module includes transport from the production gate to the building site. Transport is calculated on the basis of a scenario with the parameters described in the following table.

PARAMETER	VALUE (expressed per declared unit)
Fuel type and consumption of vehicle or vehicle type used for transport e.g. long distance truck, boat, etc.	Truck, maximum load weight of 29 t and consumption of 0.38 liters per km
Distance	1321.5 km
Capacity utilisation (including empty returns)	81% (30% of empty return)
Bulk density of transported products	500-800 kg/m ³
Volume capacity utilisation factor	1

A5, installation into the building.

The accompanying table quantifies the parameters for installing the product at the building site. All installation materials and their waste processing are included.

PARAMETER	VALUE (expressed per declared unit)
Ancillary materials for installation (specified by materials)	Jointing compound 3.33 kg/m2 board, tape 1.1 m /m2 board, screws 24 /m2 board
Water use	0.83 litres/m2 board
Other resource use	None
Quantitative description of energy type (regional mix) and consumption during the installation process	None
Wastage of materials on the building site before waste processing, generated by the product's installation (specified by type)	Plasterboard: 5% Screws: 0.03 kg Jointing Compound: 3.33 kg Jointing Tape: 0.008 kg Gypsum culls: 0.08 kg
Output materials (specified by type) as results of waste processing at the building site e.g. of collection for recycling, for energy recovering, disposal (specified by route)	Plasterboard: 5% to landfill Screws: 0.03 kg to landfill Jointing Compound: 3.33 kg to landfill Jointing Tape: 0.008 kg to landfill Gypsum culls: 0.08 kg to landfill
Direct emissions to ambient air, soil and water	None

Use stage (excluding potential savings), B1-B7

Description of the stage:

The use stage, related to the building fabric includes:

- B1, use or application of the installed product;
- B2, maintenance;
- B3, repair;
- **B4,** replacement;
- **B5**, refurbishment;
- B6, operational energy use
- B7, operational water use

Description of scenarios and additional technical information:

The product has a reference service life of 50 years. This assumes that the product will last in situ with no requirements for maintenance, repair, replacement or refurbishment throughout this period. Therefore, it has no impact at this stage.

End-of-life stage C1-C4

Description of the stage: This stage includes the next modules:

C1, de-construction, demolition;

C2, transport to waste processing;

C3, waste processing for reuse, recovery and/or recycling;

C4, disposal, including provision and all transport, provision of all materials, products and related energy and water use.

Description of the scenarios and additional technical information for the end-of-life:

PARAMETER	VALUE (expressed per declared unit)
Collection process specified by type	100% collected with mixed construction waste
Recovery system specified by type	none
Disposal specified by type	100% landfilled
Assumptions for scenario development (e.g. transportation)	On average, board waste is transported 40 km to the landfill facility.

Reuse/recovery/recycling potential, D

Description of the stage: module D has not been taken into account.

LCA results

Description of the system boundary (X = Included in LCA, MNA = Module Not Assessed)

CML 2001 has been used as the impact model. Specific data has been supplied by the plant, and generic data come from GABI and Ecoinvent databases.

All emissions to air, water, and soil, and all materials and energy used have been included.

All figures refer to a declared unit of 1 m² X-terium gypsum board.

	RODUG		CONSTR STA	USE STAGE									OF LIF	E	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY		
Raw material supply	Transport	Manufacturing	Transport	Construction-Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-recovery	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D	
Х	Х	Х	x	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	MNA	

			ENVIRONMENTAL IMPACTS for 1m ² of X-terium 12.7														
		Product stage		ruction s stage				Use stage					/ery,				
Parameters		A1 / A2 / A3	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstructio n / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recove recycling	
	Blobal Warming Potential	3,2E+00	5,7E-01	3,0E-01	0	0	0	0	0	0	0	6,2E-02	2,7E-02	0	2,2E-01	MNA	
(G	GWP 100) - <i>kg</i> CO₂ equiv∕FU	The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas, carbon dioxide, which is assigned a value of 1.															
		2,3E-07	8,7E-17	1,1E-08	0	0	0	0	0	0	0	8,5E-18	6,7E-18	0	1,2E-15	MNA	
	Dzone Depletion (ODP) g CFC 11 equiv∕FU	Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life, This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytically destroy ozone molecules,															
Ac	cidification potential (AP)	1,8E-02	2,3E-03	1,3E-03	0	0	0	0	0	0	0	2,2E-04	1,1E-04	0	1,3E-03	MNA	
	g SO₂ equiv/FU	Acid depositions have negative impacts on natural ecosystems and the man-made environment incl, buildings, The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport,														ifying	
A	Sutrophication potential (EP) $g (PO_4)^{3-}$ equiv/FU	2,1E-03	5,5E-04	1,4E-04	0	0	0	0	0	0	0	1,3E-05	2,8E-05	0	1,4E-04	MNA	
Ny Ny	$g(FO_4)$ equiv/10			Excessiv	e enrichme	nt of water	s and conti	nental surfa	aces with n	utrients, ar	d the asso	ciated adve	rse biologic	al effects,			
	hotochemical ozone reation (POPC)	4,6E-04	8,3E-05	1,0E-04	0	0	0	0	0	0	0	1,5E-05	4,5E-06	0	1,0E-04	MNA	
	g Ethylene equiv/FU	Chemica	l reactions	brought ab	out by the	light energy		, The reacti xample of a		0	,	carbons in t	he presenc	e of sunlig	nt to form o	zone is an	
nc 💦	biotic depletion potential for on-fossil ressources (ADP- lements) - <i>kg Sb equiv/FU</i>	1,0E-04	7,6E-09	1,2E-05	0	0	0	0	0	0	0	1,6E-09	2,4E-09	0	7,5E-08	MNA	
fo:	biotic depletion potential for ossil ressources (ADP-fossil	4,6E+01	7,9E+00	3,7E+00	0	0	0	0	0	0	0	7,8E-01	3,7E-01	0	3,0E+00	MNA	
fu	uels) - <i>MJ/FU</i>				Consumpti	on of non-i	enewable	resources, t	hereby low	vering their	availability	for future	generation	5.			

			RE	SOURC	E USE fo	or 1m² o	f X-teriu	um 12.7							
	Product stage	Construction sta	on process Ige				Use sta	ige				End-of-li	fe stage		φ, χ, Đ
Parameters	A1 / A2 / A3	A4 Transpo rt	A5 Installati on	B1 Use	B2 Mainten ance	B3 Repair	B4 Replace ment	B5 Refurbis hment	B6 Operatio nal energy	B7 Operatio nal water	C1 Deconst ruction / demoliti	C2 Transpo rt	C3 Waste processi	C4 Disposal	D Reuse, recovery, recycling
Use of renewable primary energy excluding renewable primary energy resources used as raw materials <i>MJ/FU</i>	7,13E+00	1,8E-01	6,4E-01	0	0	0	0	0	0	0	2,5E-03	2,2E-02	0	3,9E-01	MNA
Use of renewable primary energy used as raw materials <i>MJ/FU</i>	1,36E+00	0	0	0	0	0	0	0	0	0	0	0	0	0	MNA
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	8,50E+00	1,8E-01	6,4E-01	0	0	0	0	0	0	0	2,5E-03	2,2E-02	0	3,9E-01	MNA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials - <i>MJ/FU</i>	4,88E+01	7,9E+00	4,0E+00	0	0	0	0	0	0	0	7,8E-01	3,7E-01	0	3,1E+00	MNA
Use of non-renewable primary energy used as raw materials <i>MJ/FU</i>	4,21E-01	0	0	0	0	0	0	0	0	0	0	0	0	0	MNA
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) -	4,93E+01	7,9E+00	4,0E+00	0	0	0	0	0	0	0	7,8E-01	3,7E-01	0	3,1E+00	MNA
Use of secondary material kg/FU	1,15E-03	0	5,5E-05	0	0	0	0	0	0	0	0	0	0	0	MNA
Use of renewable secondary fuels - <i>MJ/FU</i>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MNA
Use of non-renewable secondary fuels - <i>MJ/FU</i>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MNA
Use of net fresh water - m³/FU	2,35E-02	6,1E-05	2,4E-03	0	0	0	0	0	0	0	4,6E-06	3,7E-05	0	7,7E-04	MNA

	WASTE CATEGORIES for 1m ² of X-terium 12.7																
	Product stage		uction s stage		Use stage								End-of-life stage				
Parameters	A1 / A2 / A3	A4 Transpo rt	A5 Installati on	B1 Use	B2 Mainten ance	B3 Repair	B4 Replace ment	B5 Refurbis hment	B6 Operatio nal enerov	B7 Operatio nal water	C1 Deconst ruction /	C2 Transpo rt	C3 Waste processi	C4 Disposa I	D Reuse, recovery, recycling		
Hazardous waste disposed kg/FU	3,9E-08	2,8E-08	7,0E-09	0	0	0	0	0	0	0	9,6E-11	2,1E-08	0	5,2E-08	MNA		
Non-hazardous (excluding inert) waste disposed <i>kg/FU</i>	2,4E-01	9,6E-05	8,6E-01	0	0	0	0	0	0	0	1,1E-04	3,1E-05	0	1,4E+01	MNA		
Radioactive waste disposed kg/FU	8,8E-04	9,3E-06	8,3E-05	0	0	0	0	0	0	0	9,6E-07	7,5E-07	0	4,1E-05	MNA		

				OUTPU	T FLOW	S for 1m ²	of X-teri	um 12.7							
	Product stage		ruction ss stage				Use stage		e, y g						
Parameters	A1 / A2 / A3	A4 Transpor t	A5 Installati on	B1 Use	B2 Maintena nce	B3 Repair	B4 Replace ment	B5 Refurbis hment	B6 Operatio nal energv	B7 Operatio nal water use	C1 Deconstr uction / demolitio	C2 Transpor t	C3 Waste processi ng	C4 Disposal	D Reuse, recovery, recycling
Components for re-use kg/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MNA
Materials for recycling kg/FU	1,6E+00	0	7,7E-02	0	0	0	0	0	0	0	0	0	0	0	MNA
Materials for energy recovery kg/FU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MNA
Exported energy, detailed by energy carrier <i>MJ/FU</i>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	MNA

LCA results interpretation

The following figure refers to a declared unit of 1 m² of X-terium board.

^[3] This indicator corresponds to the use of net fresh water

[4] This indicator corresponds to the sum of hazardous, non-hazardous and radioactive waste disposed.

Global Warming Potential (Climate Change) (GWP)

When analyzing the above figure for GWP, it can clearly be seen that the majority of contribution to this environmental impact is from the production modules (A1 - A3). This is primarily because the sources of greenhouse gas emissions are predominant in this part of the life cycle. CO₂ is generated upstream from the production of electricity and is also released on site by the combustion of natural gas. We can see that other sections of the life cycle also contribute to the GWP; however the production modules contribute to over 80% of the contribution. Combustion of fuel in transport vehicles will generate the second highest percentage of greenhouse gas emissions.

Non-renewable resources consumptions

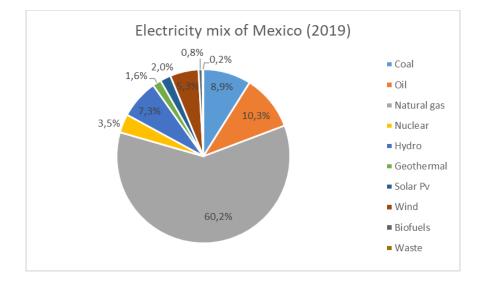
We can see that the consumption of non - renewable resources is once more found to have the highest value in the production modules. This is because a large quantity of natural gas is consumed within the factory, and non - renewable fuels such as natural gas and coal are used to generate the large amount of electricity we use. The contribution to this impact from the other modules is very small and primarily due to the non renewable resources consumed during transportation.

Energy Consumptions

As we can see, modules A1 - A3 have the highest contribution to total energy consumption. Energy in the form of electricity and natural gas is consumed in a vast quantity during the manufacture of plasterboard so we would expect the production modules to contribute the most to this impact category.

Water Consumption

Water is used within the manufacturing facility and therefore we see the highest contribution in the production phase. However, we recycle a lot of the water on site so the contribution is still relatively low. The second highest contribution occurs in the installation site due to the water used on the joint components.


Waste Production

Waste production does not follow the same trend as the above environmental impacts. The largest contributor is the end of life module. This is because the 100% of the product is assumed here to be sent to landfill once it reaches the end of life state. The very small impact associated with installation is due to the loss rate of product during implementation.

Additional information

Electricity description

TYPE OF INFORMATION	DESCRIPTION
Location	Representative of average production in Mexico
Geographical representativeness description	Split of energy sources in Mexico - Hard coal: 8.5% - Oil: 10.3% - Natural gas: 60.2% - Nuclear: 3.5% - Hydro: 7.3% - Geothermal: 1.6% - Solar PV: 2.0% - Wind: 5.3% - Biofuels: 0.8% - Waste: 0.2%
Reference year	2019
Type of data set	Cradle to gate from IEA
Source	International Energy Agency -2019
CO_2 emission kg CO_2 eq. / kWh	0.68

References

- 1. EPD International (2017) General Programme Instructions for the International EPD® System. Version 3.0, dated 2017-12-11. www.environdec.com.
- The International EPD System PCR 2012:01 Construction products and Construction services, Version 2.33
- EN 15804:2012 + A1:2013 Sustainability of construction works Environmental product declarations
 Core rules for the product category of construction products
- ISO 21930:2017 Sustainability in building construction Environmental declaration of building products
- 5. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and procedures
- 6. ISO 14040:2006 Environmental management. Life cycle assessment. Principles and framework
- 7. ISO 14044:2006 Environmental management. Life cycle assessment. Requirements and guidelines
- Saint-Gobain Environmental Product Declaration Methodological Guide for Construction Products, Version 3.0.1 (2013)
- 9. European Chemical Agency, Candidate List of substances of very high concern for Authorisation. http://echa.europa.eu/chem_data/authorisation_process/candidate_list_table_en.asp
- 10. International Energy Agence IEA World Energy Balances 2017 <u>https://webstore.iea.org/world-energy-balances-2017</u>