Declaración Ambiental de Producto

En conformidad con las normas ISO 14025 y EN 15804:2012+A2:2019 para:

Cemento Portland Compuesto CPC 30 R

Programa:

International EPD® System

DAP registrada a través del Hub América Latina del

International EPD® System

Latin America Hub of the International EPD® System

Número de registro de la DAP:

S-P-06694: Cemento Portland CPC 30 R Fecha de publicación: 2023/05/26 Fecha de Validez:

2028/05/26

Alcance geográfico: México

Una DAP debe proporcionar información actual y puede ser actualizada si las condiciones de la empresa cambian. La fecha de validez está sujeta al registro y publicación continua en www.environdec.com

Tabla de contenido

Cementos Fortaleza ®

0

Desempeño Ambiental

Información General

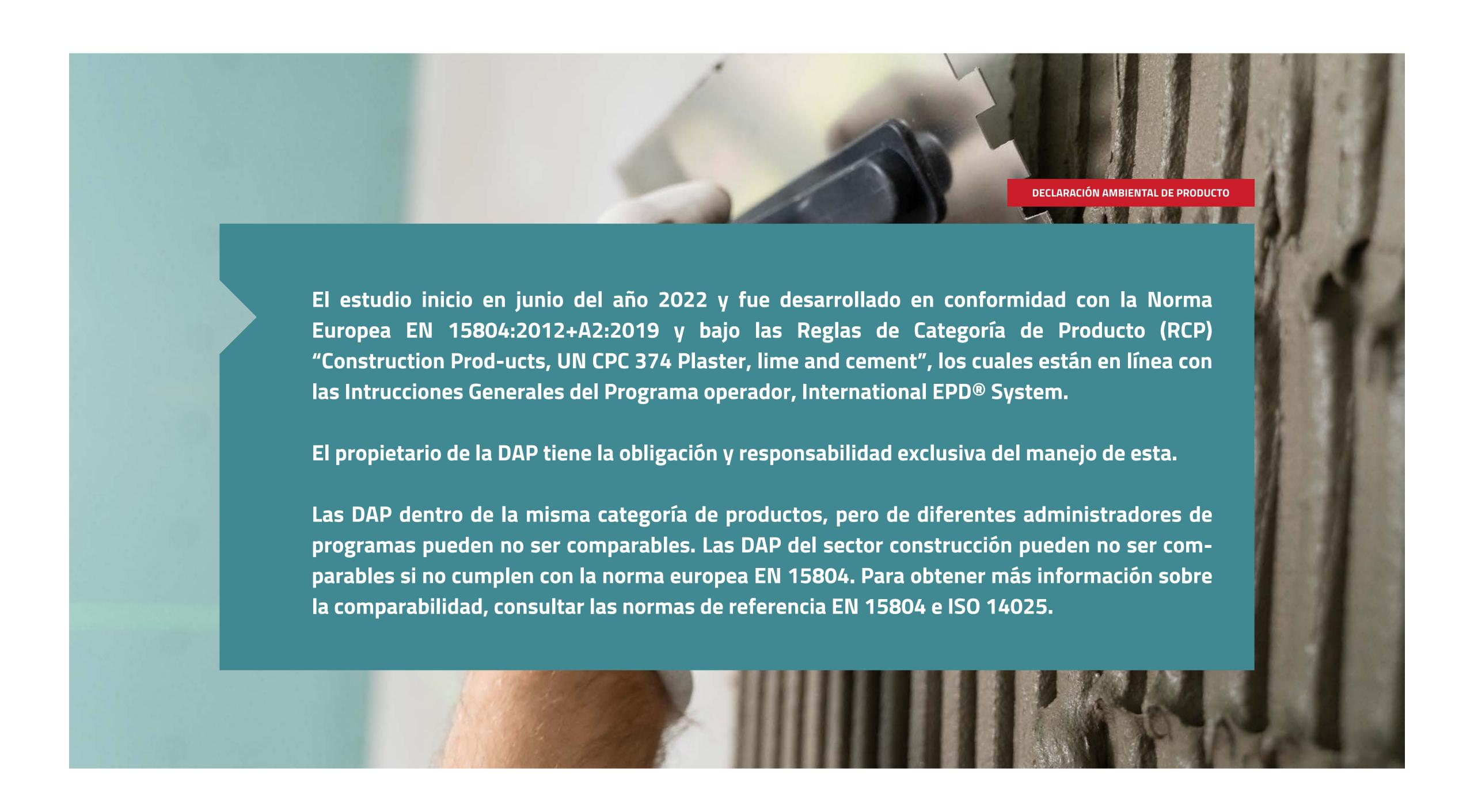
7

Verificación y Registro

B Descripción del Producto

8

Información de Contacto


Materiales contenidos en el producto

9

Referencias

ठुठ

Reglas de Categoría de Producto para el Análisis de Ciclo de Vida (ACV)

1. CEMENTOS FORTALEZA®

Trituradora y Procesadora de Materiales Santa Anita, S.A. de C.V., también denominada Cementos Fortaleza®, es una empresa que se dedica a la producción y venta de cemento Portland en saco o granel, así como cemento mortero en saco, utilizados en la industria de la construcción.

La empresa nace en México en el año 2007, tras la asociación entre Grupo Kaluz, Grupo Carso y Elementia, mientras que en el año 2011 consolida su primera planta denominada "El Palmar", ubicada en el municipio de Santiago de Anaya, Estado de Hidalgo, México. Posteriormente, en el año 2012 consolida relaciones con diversos socios comerciales y a finales de ese mismo año se presenta la marca "Cementos Fortaleza" (Cementos Fortaleza, 2022).

En el año 2013, la empresa tiene una alianza con "Lafarge", una compañía dedicada a la manufactura de materiales de construcción especializados como cemento, hormigón, áridos, yeso, etc. El resultado de dicha alianza terminó con la compra del 100% de las plantas de la empresa "Lafarge", lo cual permitió aumentar su capacidad productiva.

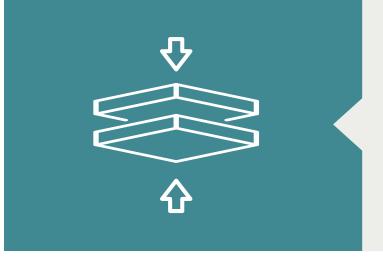
En ese sentido, Planta Tula tuvo la apertura de su línea 2 en agosto del 2015, iniciando operaciones en julio de 2017. Finalmente, Planta Progreso, la última planta de producción fue abierta en el año 2020 en el Estado de Yucatán.

Cementos Fortaleza ha consolidado su posicionamiento en el mercado de cemento al incrementar su participación de aproximadamente 5.7% en el 2017 a un estimado de 7.5% en el 2020. De esta manera, Cementos Fortaleza®, se ubica como el quinto mayor productor de cementos en México (Cementos Fortaleza, 2021).

2. INFORMACIÓN GENERAL

PRODUCTO:	CEMENTO PORT	TLAND COMPUESTO CPC 30 R
Propietario de la DAP	Lucia López García; Luis Enrique Ortega Aceves Cementos Fortaleza Avenida Paseo de las Palmas No. 781, piso 7 Carso Palmas, Col. Lomas de https://www.cementosfortaleza.com/	e Chapultepec 3ª Sección, C.P. 11000, Alcaldía Miguel Hidalgo, Ciudad de México.
Descripción del producto de construcción:	El Cemento Portland Compuesto CPC 30 R es apto para la construcción de cial.	e elementos estructurales donde no se necesita algún requisito con característica espe-
Unidad declarada:	1,000 kg de Cemento CPC 30 R, manufacturado por la empresa Cementos en Planta Progreso localizada en el Estado de Yucatán, México.	s Fortaleza® en las plantas de Tula y Palmar, ubicadas en el Estado de Hidalgo, así como
Componentes principales del producto	Cemento Portland hasta un 100%, Sulfato de calcio 2-10%, Carbonato de o	calcio 0-5%, Óxido de calcio 0-5%, Óxido de magnesio 0-4%, Sílice cristalina 1-0.2%.
Etapas del ciclo de vida no consideradas:	Los módulos (B1, B2, B3, B4, B5, B6, B7).	
	· · · · · · · · · · · · · · · · · · ·	sobre uso del producto. Contiene en detalle información de los módulos A1, A2, A3, y C4, incluye el escenario D asociado a los beneficios y cargas más allá del límite del Desempeño ambiental.
Contenido de la DAP	■ Descripción del producto.	■ Verificación y registro.
	 Material contenido en el producto. 	■ Información de contacto.
	 Reglas de Categoría de Producto para el Análisis de Ciclo de Vida. 	Referencias
Para más información consultar:	https://www.cementosfortaleza.com/ llopezg@cementosfortaleza.com lortegaa@cementosfortaleza.com	
Sitio para el cual esta DAP es representativa:	Planta ubicada en Avenida Paseo de las Palmas No. 781, piso 7 Carso Pal México.	mas, Col. Lomas de Chapultepec 3ª Sección, C.P. 11000, Alcaldía Miguel Hidalgo, Ciudad de
Público objetivo	Este documento y la información generada del mismo va dirigida hacia ur ness to business (B2B)	n grupo objetivo de desarrolladores que se interesen en construir con el producto, busi-

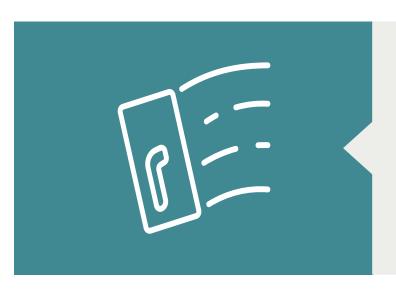
3. DESCRIPCIÓN DEL PRODUCTO


3.1 Cemento CPC 30 R

El Cemento Portland Compuesto CPC 30 R es apto para la construcción de elementos estructurales donde no se necesita algún requisito con característica especial, desarrollando un buen desempeño de fraguado, resistencia y rendimiento (Cementos Fortaleza, 2022).

Características físicas

Cumple con las especificaciones de calidad establecidas en la norma mexicana del cemento NMX-C-414-ONNCCE vigente.


Resistencia a compresión

- Mínima a 3 días: 20 N/mm2² (204 kg/cm2)
- Mínima a 28 días: 30 N/mm2² (306 kg/cm2)

Resistencia a los sulfatos

12 meses: 0.10 % de expansión (NMX C 418 ONNCCE vigente)

Tiempo de fraguado

- Inicial: 45 minutos (mínimo)
- Final: 600 minutos (máximo)

Aplicación del producto

El cemento Fortaleza CPC 30 R se puede utilizar en distintos elementos estructurales de ingeniería:

■ Pisos

Cimentaciones

Losas

Cadenas y trabes

Cisternas

- Castillos y columnas
- Estabilización de suelos
- Vivienda y edificación en general
- Conductos de agua no residual (canales)
- Tanques de almacenamiento de agua no residual
- Almacenamiento de agua de escurrimiento pluvial
- Prefabricados como bloques, tabicones, bovedillas y adoquines.

4. MATERIALES CONTENIDOS EN EL PRODUCTO

En la Tabla 1 que es presentada a continuación, se declara la composición y contenido del cemento CPC 30 R, (Cementos Fortaleza, 2022).

MATERIAL HOMOGÉNEO O SUSTANCIAS QUÍMICAS	SUSTANCIAS QUÍMICAS	PESO (%)	NÚMERO CAS	FUNCIÓN DE LA SUSTANCIA QUÍMICA	CLASIFICACIÓN DE SUSTANCIA QUE AFECTAN LA SALUD[1]
Cemento Portland	No aplica	100%	No aplica	Contenido de cemento	No está en lista
Sulfato de calcio	No aplica	2-10%	No aplica	Contenido de cemento	No está en lista
Carbonato de calcio	No aplica	0-5%	471-34-1	Contenido de cemento	No está en lista
Oxido de calcio	No aplica	0-5%	1305-78-8	Contenido de cemento	No está en lista
Oxido de magnesio	No aplica	0-4%	1309-48-4	Contenido de cemento	No está en lista
Silice cristalina	No aplica	0.2-1%	14464-46-1	Contenido de cemento	No está en lista

De acuerdo con la norma EN15804, la declaración del material contenido en el producto debe incluir la lista de sustancias extremadamente preocupantes (SVHC) que figuran en la lista de la Agencia Europea de Sustancias y Preparados Químicos¹.

LLa presente DAP se elaboró teniendo como referencia la EN 15804:2012+A2:2019 Sustainability of construction Works y PCR 2019:14 Construction products Version 1.11, además de estar en conformidad con lo establecido por la norma internacional ISO 14025:2006. Asimismo, se elaboró siguiendo las normas internacionales ISO 14040:2006 e ISO 14044:2006.En el RCP y al CPC UN CPC 374 Plaster, lime and cement (PCR 2019:14 Construction Products V 1.11, 2021), se reportan las categorías de impacto ambiental básicas y sus indicadores (Norma Euro-pea Sostenibilidad en la Construcción EN 15804:2012+A2:2019, 2019).

5.1 Unidad Declarada

1,000 kg de Cemento Portland Compuesto CPC 30 R, manufacturado por la empresa Cementos Fortaleza® en las plantas Tula y Palmar, ubicadas en el Estado de Hidalgo, México, así como en Planta Progreso, localizada en el Estado de Yucatán, México.

UNIDAD DECLARADA

5.2 Límites del sistema

No se declara el tiempo de vida útil, ya que en el alcance del estudio se excluye la etapa de uso del producto.

5.3 Límites del sistema

El límite del sistema de esta DAP es de "cuna a puerta" (cradle to gate) que contempla la inclusión de los módulos adicionales C1-C4 y el módulo D (A1-A3 +C+D).

			TIPO	DE DAP	
ETAPA DE CICLO DE VIDA	INFORMACIÓN SOBRE LOS MÓDU- LOS CONTENIDOS EN LAS ETAPAS	De cuna a puerta con módulos C1-C4 y módulo D	De cuna a puerta con modulo C1-C4, módulo D y módu- los opcionales	De cuna a tumba y módulo D	DAP servicios de cons- trucción: Cuna a puerta con módulos A1-A5 y módulos opcionales
11 12 otana do	A1) Obtención de materia prima				
A1-A3 etapa de producto	A2) Transporte	Obligatorio	Obligatorio	Obligatorio	Obligatorio
'	A3) Manufactura				
A4-A5 Etapa de	A4) Transporte		Opcional para bie-		
Construcción	A5) Construcción/instalación	-	nes Obligatorio para servicios	Obligatorio	Obligatorio
	B1) Uso				
	B2) Mantenimiento				
	B3) Reparación				
B Etapa de uso	B4) Remplazo	-	Opcional	Obligatorio	Opcional
	B5) Remodelación				
	B6) Uso de energía operacional				
	B7) Uso de agua operacional				
	C1) Deconstrucción, demolición				
C etapa de fin de	C2) Transporte	Obligatorio	Obligatorio	Obligatorio	Opcional
vida	C3) Procesamiento de residuos	Obligatorio	Obligatorio	Obligatorio	Орсіонаі
	C4) Disposición final				
D Beneficios y					
cargas más allá	 D) Reutilización, reciclaje o potencial de recuperación de 	Obligatorio	Obligatorio	Obligatorio	_
del límite del sis- tema	energía.	U	U	· · · · · ·	
Unidad declarada	Inclusión de vida útil de referen- cia	Opcional	Obligatoria	Obligatorio	-

Reglas de Categoría de Producto para el Análisis de Ciclo de Vida (ACV)

Figura 4. Módulos incluidos en la DAP

5. RCP para el Análisis de Ciclo de Vida (ACV)

Descripción de los módulos incluidos en la presente DAP.

	Etapa	del pro	ducto	Fas proc de c truc	e de esos ons- ción		E	tapa (de usc)		Eta	pa de	fin de	e vida	Etapa de re- cuperación de recursos
	Suministro de materia prima	Transporte	Fabricación	Transporte	Instalación de construcción	Uso	Mantenimiento	Reparar	Restauración	Uso de energía operacional	Uso operativo del agua	Demolición / Deconstrucción	Transporte	Procesamiento de residuos	Disposición	Reutilización-Recupeción Reciclaje-potencial
Módulo	Α1	A2	АЗ	Α4	A5	B1	B2	B4	B5	В6	В7	C1	C2	С3	C4	D
Módulos de- clarados	X	X	X	ND	ND	ND	ND	ND	ND	ND	ND	X	X	X	X	X
Geografía	MX	MX	MX	ND	ND	ND	ND	ND	ND	ND	ND	MX	MX	MX	MX	MX
Datos específi- cos utilizados		>90%		-	-	-	-	-	-	-	-	-	-	-	-	-
Variación de productos		ND		-	-	-	-	-	-	-	-	-	-	-	-	-
Variación de sitios	_	lantas d oducció		-	-	-	-	-	-	-	-	-	- • Tabl	- - 2 M	- ádulos i	- ncluidos en la DAP

5. RCP para el Análisis de Ciclo de Vida (ACV)

5.4 Descripción del proceso de manufactura

El proceso de fabricación del cemento incluye las siguientes etapas:

- 1) Trituración.
- 2) Prehomogenización.
- 3) Molienda de harina cruda.
- 4) Calcinación.
- 5) Molienda de cemento.
- 6) Envase y despacho.

Etapa 1. Trituración

En esta etapa se lleva a cabo la reducción de tamaño del material (caliza, yeso, puzolana, entre otras), operación que se realiza por medio de una trituradora.

El material es alimentado a la trituradora por un transportador de placas de acero y por vehículos de carga y, extraído por una serie de bandas transportadoras de hule hasta depositarlo en la siguiente etapa.

Etapa 2. Prehomogenización de caliza y arcilla

Consiste en disminuir las variaciones químicas de la mezcla de materiales que fueron previamente trituradas y son transportadas por medio de una banda al parque de almacenamiento. La caliza y la arcilla se mezclan mediante un proceso llamado prehomogenización, que consiste en formar dos pilas del material, con un mecanismo de apilamiento longitudinal.

Etapa 3. Almacenamiento

Todas las materias primas son depositadas por medio de bandas transportadoras en tolvas de almacenamiento. En el caso de la mezcla de arcilla y caliza prehomogenizada, así como el mineral de hierro, la arena sílica y otras materias primas, son utilizados para el siguiente proceso denominado molienda de harina cruda. Los materiales restantes (puzolana y yeso), son utilizados en el proceso de la molienda de cemento.

Etapa 4. Molienda de harina cruda

Consiste en pulverizar las materias primas y correctoras al interior de un molino vertical que por una serie de rodillos metálicos pulverizan el material al que se inyecta una corriente de gases calientes provenientes del precalentador para obtener un polvo fino seco llamado "harina cruda".

La harina cruda producida, es transportada por medio de bandas y elevador de canjilones (cadena de contenedores metálicos), hacia el silo de harina cruda.

Etapa 5. Calcinación.

La calcinación consiste en el secado, descarbonatación y sinterización de la harina cruda para obtener una piedra artificial llamada "clinker", material básico para la producción de cemento.

El clinker después de ser calcinado pasa por un enfriador (el cual es transportado por medio de placas metalicas), con el objetivo de disminuir la temperatura del material y pueda ingresar hacia un almacén intermedio (bunker) en espera de su envío a la siguiente etapa.

Etapa 6. Molienda de cemento.

Del almacenamiento de Clinker (bunker), el Clinker se transporta por banda transportadora a un edificio en donde se mezcla con aditivos (yeso, puzolana, caliza, entre otros). La mezcla de clinker con aditivos pasa a un molino de bolas que cuenta con un colector de partículas.

Etapa 7. Envase.

Del molino de bolas de la etapa anterior, el cemento es almacenado en un silo y enviado por medio de bandas transportadoras al silo de almacenamiento de cemento para su despacho en saco.

No se generan coproductos en la fabricación del cemento CPC 30 R.

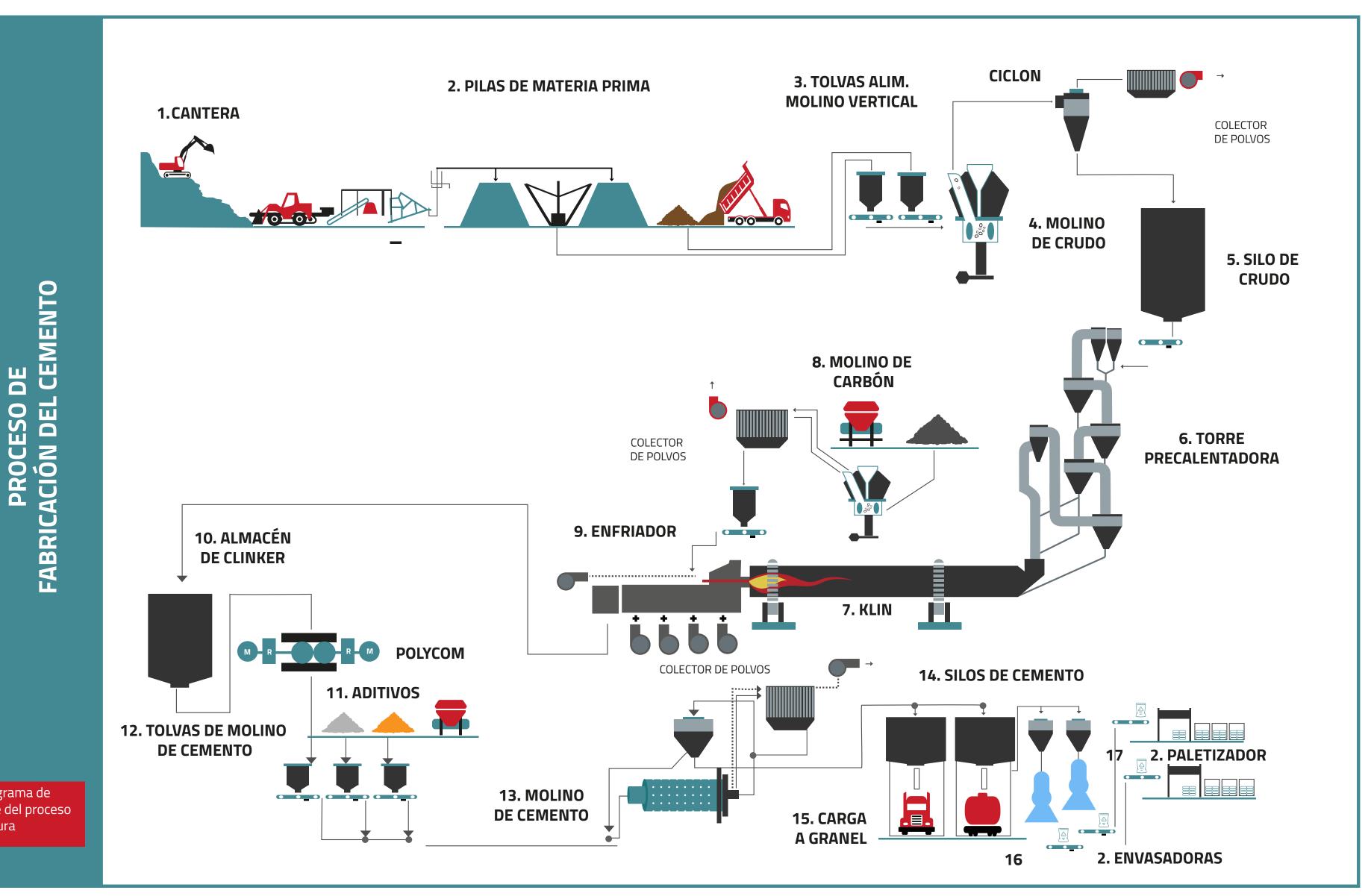


Figura 5. Diagrama de flujo a detalle del proceso de manufactura

FABRIC

5. RCP para el Análisis de Ciclo de Vida (ACV)

5.5 Suposiciones

Suposiciones relevantes de datos secundarios

A continuación, se presentan las suposiciones relacionadas al proceso de fabricación de los cementos:

Distancia que recorre el transporte marítimo desde la planta de producción del Clínker que se compra en el caso de planta Progreso: 9,662 km. Esto se debe a que en esta planta no se cuenta con hornos de calcinación, por lo que se compra este insumo que es traído desde Túnez.

Se realizaron suposiciones para el diseño de los diferentes escenarios asociados al fin de vida del cemento, módulos C1) Desconstrucción demolición, C2) Transporte, C3) Procesamiento de residuos, C4) Disposición y D) Potencial de reúso, reciclaje o recuperación de energía en el futuro, basados principalmente en estadísticas del sector construcción, equipos y maquinarias utilizadas comúnmente para procesos de demolición y la normatividad de México, así como el cálculo promedio de distancias.

En la tabla 4 que se presenta a continuación se podrá observar mayor detalle de lo contemplado en cada módulo.

Escenarios de fin de vida	C1 Demolición o deconstrucción	C2 Transporte de residuos	C3 Tratamiento de residuos	C4 Eliminación de residuos	D cargas y beneficios netos
Reciclaje (46%)	El concreto producto de la demo- lición de las edificaciones se apro- vecha mediante tratamiento.	Camiones de más de 32 toneladas de capacidad con un promedio de dis- tancia de 251 km a cen- tros de acopio.	Se recicla hasta el 46% del concreto generado en los residuos de demolición y construcción (RCD) a nivel nacional. Fuentes: Diagnostico Básico para la Gestión Integral de Residuos, pp 116, (SEMARNAT, 2020). Sitio web oficial, Concretos Reciclados, 2022	NA	Reciclaje de residuos de con- creto para la generación de concreto reciclado. Los bene- ficios netos están asociados a dejar de producir concreto.
Disposición final (54%)	El concreto producto de la demoli- ción de las edificaciones se elimina.	Camiones de más de 32 toneladas de capacidad con un promedio de dis- tancia de 251 km a relle- nos sanitarios.	NA	Cerca del 54% del concreto generado en los residuos de demolición y construcción (RCD) no se recicla y se envía a disposición final.	Disposición final del concreto en relleno sanitario.

5. RCP para el Análisis de Ciclo de Vida (ACV)

5.6 Criterios de corte

El documento de RCP establece que deben incluirse en el ICV un mínimo del 99% del total de flujos (materia y energía) en los módulos A1, A2 y A3, (EPD, 2021).

Con la finalidad de incluir los datos relevantes, se cumplió con el mínimo establecido por el RCP dejando fuera del alcance de este estudio, la infraestructura de la compañía, las actividades relacionadas con el transporte de empleados, actividades administrativas desarrolladas por los empleados, elementos de protección personal usados por los trabajadores, así como los insumos usados para mantenimientos correctivos y preventivos.

Para el consumo eléctrico requerido en la manufactura de los cementos se consideró una regla de corte del 99% de la electricidad reportada, toda vez que el 1% de esta energía corresponde a actividades administrativas dentro de la planta.

5.7 Asignaciones

En el presente estudio no se aplicaron procesos de asignación.

5.8 Representatividad temporal

El año 2021 fue el año de recopilación de información. Los datos fueron obtenidos de registros de Cementos Fortaleza, reportando el consumo de materias primas y energía, así como la distancia, origen y el tipo de transporte de los insumos requeridos para fabricación del cemento CPC 30 R

5.9 Análisis de la calidad de los datos

De acuerdo con la ISO 14044-2008, debe especificar los requisitos de calidad de los datos para poder cumplir con el objetivo y con el alcance del ACV.

El análisis de calidad de datos medidos y recopilados fue realizado para los siguientes requisitos:

a) Tiempo

b) Geografía

e) Integridad

c) Tecnología

d) Precisióng) Coherencia

h) Reproducibilidad

i) Fuentes de los datos

f) Representatividad

J) Incertidumbre de

la información

A continuación se presenta la escala de incertidumbre de los datos:

Baja: La cobertura temporal es acorde con el año de referencia del estudio. Tanto la geografía como la tecnología de donde proviene el dato son acordes con el proceso de Cementos Fortaleza®.

Media: Uno de los tres atributos (cobertura temporal, geográfica y tecnológica) no es acorde con el año de referencia del estudio o el proceso de Cementos Fortaleza®.

Alta: Dos o más de los tres atributos (cobertura temporal, geográfica y tecnológica) no son acordes con el año de referencia del estudio o el proceso de Cementos Fortaleza[®].

El resumen de la calidad de los datos se muestra en las siguientes tablas:

Requisito de calidad de datos DATO	Cobertura temporal	Cobertura geográfica	Cobertura tecnológica	Precisión	Integridad	Representati- vidad	Coherencia	Reproducibili- dad	Fuentes de la información	Medido o es- timado	Escala de In- certidumbre
Energía, emisiones, residuos y combusti- bles y consumo de materias primas para la fabricación del cemento CPC 30 R.	2020-2021	México Promedio mundial excepto Europa	Moderna	√	√	√	√	√	Cementos Fortaleza® Ecoinvent 3.8	M&E	Media
Consumo de materias primas para la fabri- cación del cemento CPC 30 R. Gas L.P.	2021	Promedio mundial excepto Europa	Moderna	√	√	✓	√	√	Cementos Fortaleza® Ecoinvent 3.8	M	Baja
Consumo de energía eléctrica	2021	México	Moderna	√	\checkmark	√	√	✓	Cementos Fortaleza® Ecoinvent 3.8	M	Baja
Consumo de energía ciclo combinado	2019-2021	Promedio mundial Excepto Europa	Moderna	√	√	Promedio mundial Excepto Europa	√	√	Cementos Fortaleza® Ecoinvent 3.8	M&E	Media

i Tabla 5. Resumen de la calidad de datos para el módulo A1) Obtención de materia prima

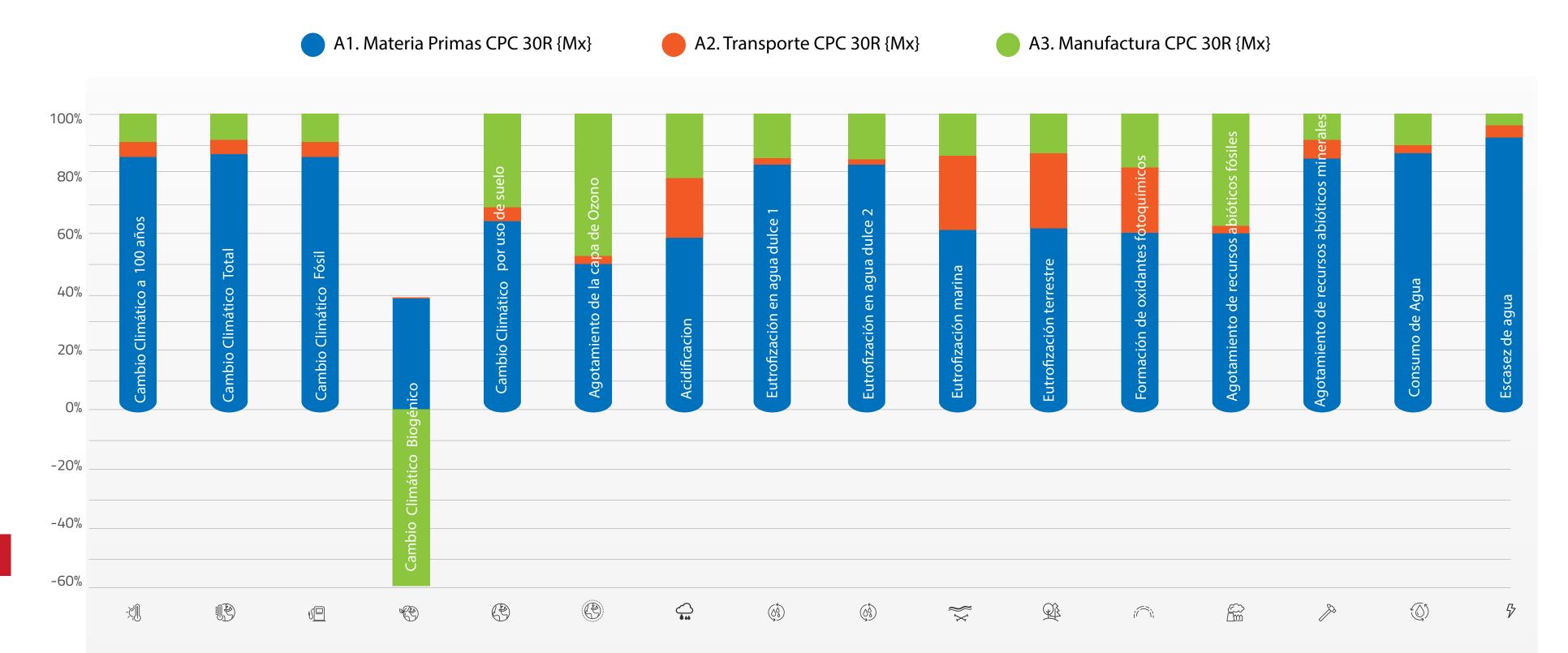
Requisito de calidad de datos DATO	Cobertura temporal	Cobertura geográfica	Cobertura tecnológica	Precisión	Integridad	Representati- vidad	Coherencia	Reproducibi- Iidad	Fuentes de la información	Medido o es- timado	Escala de In- certidumbre
Distancia y tipo de transporte de materias pri- mas	2021	Otros países y Mé- xico	Moderna	√	√	√	√	√	Cementos Fortaleza® Ecoinvent 3.8	M&E	Baja
Consumo de combustibles movimientos inter- nos (diésel y gasolina)	2021	Promedio mundial Excepto Europa	Promedio Global	√	√	Promedio Global	√	√	Cementos Fortaleza® Ecoinvent 3.8	M&E	Baja

5. RCP para el Análisis de Ciclo de Vida (ACV)

Requisito de calidad de datos Dato	Cobertura temporal	Cobertura geográfica	Cobertura tecnológi- ca	Precisión	Integridad	Representatividad	Coherencia	Reproducibilidad	Fuentes de la infor- mación	Medido o estimado	Incertidumbre
Consumo de materiales auxiliares usados durante la manufactura	2021	Promedio mundial excepto Europa	Promedio mun- dial excepto Europa	✓	\checkmark	Promedio mundial excepto Europa	√	√	Cementos Fortaleza® Ecoinvent 3.8	M&E	Baja
Emisiones al aire	2021	México	Moderna	✓	√	✓	√	√	Cementos Fortaleza®	M	Baja
Generación de residuos	2021	México	Moderna	✓	√	√	√	√	Cementos Fortaleza®	M	Baja
Procesos de tratamiento de residuos, consumos de materiales y energía relacionados.	2021	México	México	√	√	México	√	√	Cementos Fortaleza®	M	Baja
Distancia y tipo de transporte de residuos hacia el sitio de disposición final y reciclaje	2021	México	Moderna	✓	√	√	✓	√	Cementos Fortaleza® Ecoinvent 3.8	M&E	Baja

M&E: Medido y Estimado, M: Medido, E: Estimado

6. DESEMPEÑO AMBIENTAL



Se presentan los resultados para los parámetros básicos de impacto ambiental obtenidos mediante el método EN 15804:2012+A2:2019 "Method V1.02 / EF 3.0 normalization and weighting set (PRé-Sustainability, 2021)" implementado en el software SimaPro 9.3.0.3.

dulos de alcance de cuna a puerta A1-A3, sin incluir los resultados relacionados con los módulos adicionales C1-C4 y D, que según la EN 15804:2012+A2:2019, deberán ser reportados de manera independiente y sin graficarse.

6.1 Huella ambiental del Cemento CPC 30 R.

Como se puede ver en la Gráfica 1 se reportan los impactos ambientales potenciales del producto en los mó-

Gráfica 1. Huella ambiental de 1,000 kg de Cemento CPC 30 R

6. DESEMPEÑO AMBIENTAL

Las menores contribuciones se encuentran en el módulo A2, mientras que el módulo con mayores porcentajes en la mayoría de las categorías es el de obtención de materias primas, A1. En el caso de la etapa de manufactura A3, se identificaron impactos mayores que la etapa de transporte y menores que la etapa de materias primas.

En la etapa A1, se observan impactos mayores al 80% en categorías como "cambio climático" y "agotamiento de los recursos abióticos minerales". En el caso de la categoría de agotamiento de recursos abióticos minerales, podemos identificar que este impacto resulta de la obtención directa de minerales como la caliza, Clínker, entre otros.

Para el caso de los impactos relacionados con la etapa de transportes A2, se identificaron contribuciones mayores al 10% en categorías como "acidificación" y "cambio climático". Cabe señalar que en esta etapa se considera el transporte marítimo y terrestre del Clínker a planta Progreso desde Argelia, este amplio trayecto tiene asociado diferentes impactos como las emisiones de azufre y otros gases de efecto invernadero que impactan en las categorías anteriormente mencionadas.

Por el otro lado, para el caso de la etapa de manufactura A3, se observaron impactos relacionados con el uso de combustibles fósiles y el empaque del producto final, debido a la emisión de diversos contaminantes atmosféricos en la combustión del diésel y a la deforestación ocasionada por el uso de papel en los sacos del producto final, la cual promueve el cambio climático por la pérdida de sumideros de carbono. Para el caso de la categoría de Cambio climático-biogénico se observan contribuciones por debajo del eje, esto se debe a que algunos insumos como las tarimas de madera tienen un impacto positivo que mitiga los efectos de cambio climático gracias a la captura y almacenamiento de carbono en la madera.

		CPC 30 R			
Categorías de impacto básicas	Unidad	A1) Materias pri- mas CPC 30 R {Mx} 2022	A2) Transporte CPC 30 R {Mx} 2022	A3) Manufactura CPC 30 R {Mx} 2022	Total, A1-A3
Cambia slimática CMD	kg CO² eq	3.06E+02	1.72E+01	3.32E+01	3.56E+02
Cambio climático - GWP	%	85.86%	4.83%	9.31%	100.00%
Cambio climático total	kg CO² eq	3.11E+02	1.78E+01	3.16E+01	3.60E+02
Cambio climático - total	%	86.30%	4.94%	8.76%	100.00%
	kgZ CO² eq	3.09E+02	1.78E+01	3.37E+01	3.61E+02
Cambio climático-fósil	%	85.72%	4.93%	9.35%	100.00%
	kg CO² eq	1.56E+00	2.00E-03	-2.27E+00	-7.14E-01
Cambio climático-biogénico	%	40.62%	0.05%	-59.33%	100.00%
Cambio climático-uso del suelo y cambio del	kg CO² eq	1.36E-01	1.14E-02	6.69E-02	2.14E-01
uso del suelo	%	63.42%	5.32%	31.26%	100.00%
	kg CFC11 eq	5.75E-05	3.63E-06	5.51E-05	1.16E-04
Agotamiento de la capa de ozono	%	49.46%	3.13%	47.41%	100.00%
Λ -: J:¢::	mol H+ eq	1.10E+00	4.03E-01	4.05E-01	1.91E+00
Acidificación	%	57.67%	21.13%	21.20%	100.00%
Futuation sián an agua dulca 1	kg P eq	3.04E-02	8.72E-04	5.47E-03	3.68E-02
Eutrofización en agua dulce 1	%	82.76%	2.37%	14.87%	100.00%
	kg PO4 eq	9.34E-02	2.68E-03	1.68E-02	1.13E-01
Eutrofización en agua dulce 2	%	82.76%	2.37%	14.87%	100.00%
	kg N eq	2.32E-01	9.85E-02	5.27E-02	3.83E-01
Eutrofización en agua marina	%	60.49%	25.74%	13.77%	100.00%
Futrofización torrectro	mol N eq	2.58E+00	1.09E+00	5.67E-01	4.24E+00
Eutrofización terrestre	%	60.83%	25.79%	13.38%	100.00%
Cormación do azono foto químico	kg NMVOC eq	7.61E-01	2.88E-01	2.29E-01	1.28E+00
Formación de ozono fotoquímico	%	59.54%	22.54%	17.92%	100.00%
Agotamiento de recursos abióticos-combusti-	MJ	5.30E+03	2.40E+02	3.34E+03	8.88E+03
bles fósiles	%	59.66%	2.70%	37.64%	100.00%
Agotamiento de los recursos abióticos-minera-	kg Sb eq	5.05E-04	3.89E-05	5.28E-05	5.97E-04
les y metales	%	84.64%	6.52%	8.84%	100.00%
Consumo do agua	m3 depriv.	1.90E+01	5.97E-01	2.24E+00	2.19E+01
Consumo de agua	%	87.02%	2.73%	10.26%	100.00%
Escasoz do agua	m3H2Oeq	6.90E+00	3.46E-01	2.64E-01	7.51E+00
Escasez de agua	%	91.89%	4.61%	3.51%	100.00%

D) Cargas y beneficios netos

5.05E+02

5.15E+02

5.12E+02

2.99E+00

5.81E-01

4.29E-04

3.83E+00

4.80E-02

1.47E-01

6.31E-01

6.99E+00

2.44E+00

2.66E+04

1.50E-03

3.27E+01

2.34E+01

6. DESEMPEÑO AMBIENTAL

(i) Tabla 9. Huella ambiental del fin de vida del Cemento CPC 30 R, módulos C1-C4 y D

6.2 Huella ambiental del fin de vida del Cemento CPC 30 R, módulos C1-C4 y D.

En este apartado se presentan los resultados de la huella ambiental del fin de vida para los escenarios adicionales propuestos construidos bajo estadísticas e información consultada sobre el comportamiento del sector de la construcción en México (SEMARNAT, 2020), (SEMARNAT, 2006). Estos escenarios muestran los resultados para 1,000 kg de cemento CPC 30 R contenidos en residuos de concreto y que son generados a partir de la demolición de una edificación (Concretos Reciclados, 2021), (Escobar, 2018) (Maya Rojas, 2019).

C1-C4,D ESCENARIO DE FIN DE VIDA COMBINADO											
Categoría de impacto	Unidad	C1 Decons- trucción	C2 Transporte de residuos	C3 Tratamiento de residuos	C4 Eliminación de residuos						
Cambio climático- GWP100	kg CO2-eq	1.11E+03	2.23E+01	1.83E+00	6.63E+00						
Cambio climático - total	kg CO2 eq	1.14E+03	2.25E+01	1.85E+00	6.73E+00						
Cambio climático-fósil	kg CO2 eq	1.13E+03	2.25E+01	1.85E+00	6.71E+00						
Cambio climático-biogénico	kg CO2 eq	2.37E+00	1.68E-02	6.52E-04	8.02E-03						
Cambio climático-uso del suelo y cambio del uso del suelo	kg CO2 eq	2.98E-01	8.74E-03	1.84E-04	1.41E-02						
Agotamiento de la capa de ozono	kg CFC11 eq	2.05E-03	5.29E-06	3.95E-07	1.94E-06						
Acidificación	mol H+ eq	1.43E+01	7.33E-02	1.92E-02	5.99E-02						
Eutrofización en agua dulce 1	kg P eq	7.04E-02	1.69E-03	5.73E-05	5.04E-04						
Eutrofización en agua dulce 2	kg PO4 eq	2.16E-01	5.20E-03	1.76E-04	1.55E-03						
Eutrofización en agua marina	kg N eq	1.70E+00	1.64E-02	8.51E-03	2.31E-02						
Eutrofización terrestre	mol N eq	1.86E+01	1.79E-01	9.32E-02	2.53E-01						
Formación de ozono fotoquímico	kg NMVOC eq	7.84E+00	6.92E-02	2.56E-02	7.15E-02						
Agotamiento de recursos abióti- cos-combustibles fósiles	MJ	1.23E+05	3.59E+02	2.54E+01	1.34E+02						
Agotamiento de los recursos abióticos-minerales y metales	kg Sb eq	1.22E-03	5.35E-05	9.51E-07	1.37E-05						
Consumo de agua	m3 depriv.	1.60E+01	1.37E+00	3.97E-02	3.73E+00						
Escasez de agua	m3H2Oeq	1.96E+01	9.06E-01	2.92E-02	1.83E+00						

6. DESEMPEÑO AMBIENTAL

6.3 Desempeño ambiental por uso de recursos

Los indicadores que describen el uso de los recursos se evaluaron con el método de la demanda energética acumulada versión 1.11 (Frischknecht et al. 2007), excepto el indicador de uso de agua dulce neta que se evaluó con la versión 1.06 de Recipe 2016 Midpoint (H) (Huijbregts et al. 2017).

La descripción detallada del uso de los recursos se presenta en la siguiente tabla.

Indicadores que describen el uso de recursos	Unidad	A1) Mate- rias primas	A2) Trans- porte	A3) Manu- factura	Total, A1- A3
Uso de energía primaria renovable excluyendo los recursos de energía primaria renovable utilizada como materia prima.	MJ	9.58E+01	2.10E+00	1.07E+02	2.04E+02
Uso de energía primaria renovable utilizada como materia prima	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Uso total de energía primaria renovable (energía primaria y recursos de energía primaria renovable utilizada como materia prima)	MJ	9.58E+01	2.10E+00	1.07E+02	2.04E+02
Uso de energía primaria no renovable, excluyendo los recursos de energía primaria no renovable utili- zada como materia prima	MJ	5.73E+03	2.49E+02	3.55E+03	9.53E+03
Uso de la energía primaria no renovable utilizada como materia prima	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Uso total de energía primaria no renovable (energía primaria y recursos de energía primaria renovable utilizada como materia prima)	MJ	5.73E+03	2.49E+02	3.55E+03	9.53E+03
Uso de materiales secundarios	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Uso de combustibles secundarios renovables	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Uso de combustibles secundarios no renovables	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Uso neto de recursos de agua dulce	m³	6.35E-01	1.95E-02	7.67E-02	7.32E-01

6.4 Generación de residuos y flujos de salida

Los indicadores ambientales que describen la generación de residuos se calcularon utilizando el método EDIP 2003 y se muestran en la Tabla 12 (Hauschild y Potting, 2005).

Indicadores que describen las categorías de residuos, flujos de salida y energía	Unidad	A1) Mate- rias primas	A2) Trans- porte	A3) Manu- factura	Total, A1- A3
Disposición final de residuos peligrosos	kg	3.51E-03	3.68E-04	9.00E-03	1.29E-02
Disposicion final de Residuos no peligrosos	kg	1.20E+01	5.44E+00	1.46E+00	1.89E+01
Disposicion final de Residuos radiactivos	kg	2.05E-02	1.58E-03	2.35E-02	4.56E-02
Componentes para su reutilización	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materiales para el reciclaje	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materiales para valorización energética (recuperación de energía)	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Energía exportada	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00

i Tabla 11. Indicadores de residuos, flujos de salida y energía de 1,000 kg de cemento CPC 30 R.

7. VERIFICACIÓN Y REGISTRO

CEN STANDARD EN 15804 SERVED AS THE CORE PCR	
Programa	THE INTERNATIONAL EPD® SYSTEM International EPD® System www.environdec.com EPD® DAP registrada en el programa regional/hub: EPD Latin America www.epdlatinamerica.com
Administrador del programa	EPD International AB Box 210 60, SE-100 31 Stockholm, Sweden. E-mail: info@environdec.com Latin American Hub of the International EPD® System Chile: Alonso de Ercilla 2996, Ñuñoa, Santiago Chile. Mexico: Bosques De Bohemia 2 No. 9, Bosques del Lago. Cuautitlan Izcalli, Estado de México, México. C.P. 54766 www.centroacv.mx
No. Registro de DAP:	S-P-06694: Cemento Portland CPC 30 R
Fecha de Validez	2028/05/26
Fecha de publicación:	2023/05/26
Representatividad temporal de los datos:	2021
Ubicación geográfica:	México
Plantas consideradas en el ACV:	Planta Palmar, Municipio de Santiago de Anaya, Estado de Hidalgo. Planta Tula, Municipio de Atotonilco de Tula, Estado de Hidalgo. Planta Progreso, Estado de Yucatán
RCP:	PCR 2019:14 Construction products (EN 15804:A2) (v 1.11)*
Código CPC:	UN CPC 374 Plaster, lime and cement
Moderador del RCP:	Martin Erlandsson, IVL Swedish Environmental Research Institute, martin.erlandsson@ivl.se
La revisión del RCP fue realizada por:	The Technical Committee of the International EPD® System. Mas información en www.environdec.com/TC. Review chair: Claudia A. Peña, Universidad de Concepción, Chile. El panel de revisión puede ser contactado a través de la secretaría www.environdec.com/contact.
Verificación independiente de los datos de la DAP según ISO 14025:2006	DAP proceso de certificación (Internal) X DAP verificación (External)
Verificador de tercera parte: Aprobado por:	Ruben Carnerero Acosta Approved EPD verifier r.carnerero@ik-ingenieria.com The International EPD® System
El procedimiento de seguimiento durante la validez de la DAP implica la participa- ción de un Verificador de tercera parte	X Si No

8. INFORMACIÓN DE CONTACTO

ANÁLISIS DE CICLO DE VIDA

PROPIETARIO AUTOR ACV ADMINISTRADOR DE PROGRAMA

Trituradora y Procesadora de Materiales Santa Anita, S.A. de C.V.

Avenida Paseo de las Palmas No. 781, piso 7 Carso Palmas, Col. Lomas de Chapultepec 3ª Sección, C.P. 11000, Alcaldía Miguel Hidalgo, Ciudad de México.

https://www.cementosfortaleza.com/ Persona de contacto: Lucia Lopez García Ilopezg@cementosfortaleza.com Centro de Análisis de Ciclo de Vida y Diseño Sustentable – CADIS

Bosques De Bohemia 2 No. 9, Bosques del Lago. Cuautitlan Izcalli, Estado de México, México. C.P. 54766

www.centroacv.mx

Estudio ACV: Análisis de Ciclo de Vida del Cemento Compuesto Portland CPC 30 R

Autores de ACV: Luque Claudia, René García Sánchez.

Persona de contacto: Juan Pablo Chargoy jpchargoy@centroacv.mx **EPD International AB**

Box 210 60, SE-100 31, Stockholm, Sweden. www.environdec.com

info@environdec.com

DAP registrado a través del programa/centro regional totalmente alineado

EPD Latin America www.epd-latinamerica.com

Chile:

Alonso de Ercilla 2996, Ñuñoa, Santiago Chile.

México:

Av. Convento de Actopan 24 Int. 7A, Colonia Jardines de Santa Mónica, Tlalnepantla de Baz, Estado de México, México, C.P. 54050

9. REFERENCIAS

ISO 14020:2000(es) Etiquetas y declaraciones ambientales — Principios generales ISO 14025:2006(es) Etiquetas y declaraciones ambientales — Declaraciones ambientales tipo III — Principios y procedimientos

EN 15804:2012+A2:2019 Sostenibilidad en la construcción. Declaraciones ambientales de producto.

Cementos Fortaleza. (2021). Hoja Técnica de Seguridad del Material. Cemento.

Cementos Fortaleza. (2021). Informe anual integrado. México.

Cementos Fortaleza. (2022). Cementos Fortaleza. Historia. Obtenido de https://www.cementosfortaleza.com/historia

Concretos Reciclados. (2021). Concretos Reciclados Oficial. Obtenido de http://www.concretosreciclados.com.mx/

Escobar, A. C. (2018). Metodología de selección de la técnica de demolición según el tipo de edificación.

Maya Rojas, O. M. (2019). Análisis técnico económico para el uso de alternativas de demolición en el edificio no. 19 de la PUJ.

PCR 2019:14 Construction Products V 1.11. (05 de 02 de 2021). EPD System. Obtenido de https://www.environdec.com/

PRé Consultants. (2010). Data base manual. Methods library. Recuperado el 20 de abril de 2010, de http://www.pre.nl/download/manuals/DatabaseManualMethods.pdf SEMARNAT. (2006). Norma ambiental para el Distrito Federal NADF-007-RNAT-2004. Secretaria del Medio Ambiente y Recursos Naturales, Ciudad de México.

SEMARNAT. (2020). Diagnostico Basico para la Gestión Integral de Residuos. México