ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for

Product family

SSC Etri Fönster Inward opening windows

Fixed window

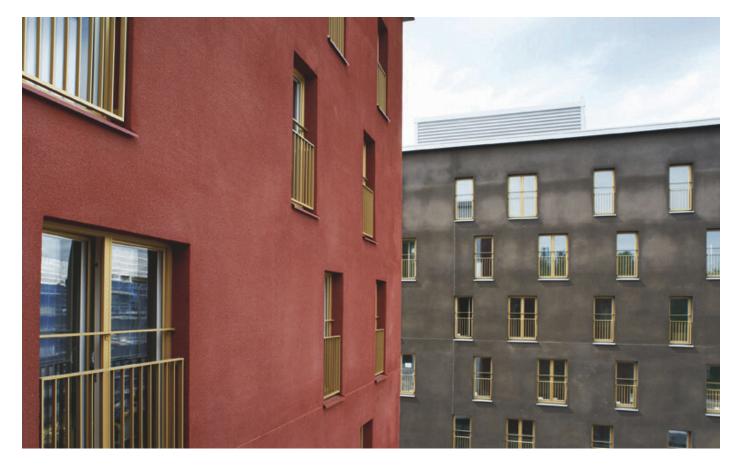
Product name

From SSC Etri Fönster Box 153 574 22 Vetlanda

Publication date 2022-11-24 Revision date: 2023-03-20 (Version 2) Valid for 5 years until 2027-11-23

Programme

The International EPD® System, www.environdec.com


Programme operator EPD International AB

EPD registration number S-P-06573

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

Environmental Product Declaration

Environmental Product Declarations (EPD) present transparent, verified and comparable information about the life-cycle environmental impact of products.

The International EPD[®] System is a global program for environmental declarations based on ISO 14025 and EN 15804. The EPD online database currently contains more than 1100 EPDs for a wide range of product categories by organisations in 45 countries.

Differences versus previous version

2022-11-24 Version 1

2023-03-20 Version 2

Editorial change: Table 2 has been updated from declaring content in FU to declaring content in the product in size 1230x1480 mm as well as packaging and proportion of renewable material.

Company information

Owner of the EPD

SSC Etri Fönster Brogårdsgatan 1 574 38 Vetlanda

Description of the organisation

SSC Etri Fönster has been manufacturing windows since 1959. Genuine, well-made quality windows and doors for public environments. When you choose windows from SSC Etri Fönster, you get great opportunities to adapt color, design and function. We help you all the way, from sketch to final product.

Contact/Certification and test manager

Mats Brånäs Tel 010-451 42 19 Mobile 070-388 41 89 E-mail info@sscgroup.se

Product-related or management system-

related certifications ISO 9001:2015, ISO 14001:2015 Sunda Hus, Byggvarubedömningen

Average or specific EPD:

Average

Standard and energy variations. The energy variation has up to 10 % higher environmen-tal impacts with the most differing impact category being abiotic depletion of elements (ADPE). Climate change has about 1% higher impacts for the energy type window.

Since this difference is within +/-10%, for all cases described above, the results will be presented in one results table for 1 m^2 with energy glass.

Product information

Fixed frame – EA-FFL

Fixed wooden frame with external aluminum cladding and a 3-glazed insulating glass glazed from the inside.

According to the Construction Products Ordinance CPR (EU) no. 305/2011, the essential properties of the product must be declared in the CE marking and Declaration of Performance. The technical properties of the window are declared in the Declaration of Performance, DoP no. 40-29-CE3015106 which can be accessed on SSC's website.

Construction product declaration eBVD nr C-SE55632265201-2

A picture of the window Fixed frame – EA-FFL Can be seen to the right.

Product information

Energy glass:

Energy glass consists of a float glass that is coated with a thin film of metal oxide that lets through short-wave solar energy and reflects long-wave room heat.

The coating is almost completely transparent, but there is some difference in light input between coated glass and uncoated glass.

Coated glass is used to achieve better insulating ability in a glass, by combining different numbers of coated glass in a window or insulating glass, you can achieve different levels of insulating ability for a window.

The greater the number of energy glasses a window has, the better the insulation capacity, but also the darker the glass.

Gas:

An insulating glass consists of glass that are separated from each other by spacers, these spacers can be filled with gas such as argon to give the insulating glass a better insulating ability. Argon does not affect sunlight radiation but improves the insula-ting ability of the insulating glass. An insulating glass with two glasses consists of an argon gas-filled spacer, an insulating glass with three glasses has two spacers, here you can choose to fill one or both spacers with argon gas.

If you fill both distances with gas, you achieve a better insulation capacity than if only one distance is gas-filled.

By combining different sets of energy-coated glass and argon-filled glass spacers, you can get different glass properties for insulation and light input.

If you also combine these components with different types of glass spacing and dimensions of constituent components as well as different choices of type of glass, you have an almost infinite number of different combinations.

This EPD covers both standard and energy windows, the difference in results is described under "average or specific EPD". The results table is based on results of energy glass.

Standard:

The insulating glass consists of three glasses separated by two glass spacers made of plastic (hot edge). The inner glass is en-ergy coated and the inner glass spacer is filled with argon.

Energy:

The same insulating glass construction as standard, except that both the inner and outer glass are energy-coated and that both glass spacers are filled with argon.

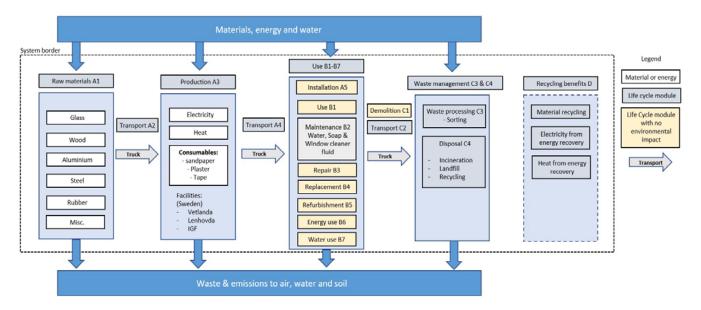
LCA information							
Functional Unit	The functional unit used in this report is 1 m². The weight of finished EA-FFL is 35,47 kg per m².						
	Standard size is 1230 x 1480 mm						
Reference Service Life (RSL)	The RSL is set to 50 years. The RSL is based on the fact that windows with alumnum-clad windows have a longer service life than similar windows made of PVC or wood.						
Product group classification	UN CPC 42120						
Goal and Scope	The result will be used to understand where the environmental burden for the product occurs during the life cycle and aim to lay a road map for development to reduce this burden. The result will be communicated by the International EPD system.						
Manufacturing Site	Brogårdsgatan 1, 574 38, Vetlanda, Sverige,						
Geographical Area	Europe						
Compliant with	This EPD follows the "Book-keeping" LCA approach which is defined as an attributional LCA in the ISO 14040 standard.						
	The EPD is compliant with:						
	• ISO 14025						
	 EN 15804:2012+A2:2019 Product Category Rules PCR 2019:14. Construction products and construction services. 						
	Version 1.11						
	Sub-PCR-007 Windows and doors (EN 17213)						
Cut-Off Rules	The procedure below is followed for the exclusion of inputs and outputs according to EN 15804:2012+ A2:2019 standard:						
	 In the case of insufficient input data or data gaps for a unit process, the cut-off criterion is 1 % of renewable and non-renewable primary energy usage and 1 % of the total mass input to that unit process. The maximum neglected input flows per declared module (A1- A3) is 5 % of energy 						
	usage and mass.						
	No cut-offs have been made concerning specific data in this study.						
Background Data	The data quality of the background data is considered good. All site-specific data is col- lected from the year 2019. ecoinvent is the world's biggest LCI data library and the latest and most updated version was used. ecoinvent's data library contain data for the specific geographical regions relevant for this study.						
	The assessment considers all available data from the production process, including all raw materials and auxiliary materials used as well as the energy consumption in relation to available ecoinvent 3.8 datasets for the manufacture of concrete piles.						
	The background data from ecoinvent 3.8 are from 2016-2019						
Electricity data	Electricity consumption in the A3 module comes from 100% wind power certified by Guarantee of Origin, Electricity is represented by data in ecoinvent 3.8 regionalized for Sweden.						
Assumptions	In A4 the transport distance is assumed to be 320 km, based on average distances 2020.						
	When installing and uninstalling the window no environmental aspects in addition to usir of electrical machines is assumed according to installation instructions from SSC.						
	The used window is assumed to be transported 50 km to the closest waste management facility.						
	The window is assumed to require 60 ml/m ² of cleaning solution per year.						
	The used window is assumed to be transported 50km to the closest waste management facility. There it is disassembled, and the following waste treatment activities performed:						
	 Aluminum and steel are recycled at 90% collection rate Glass is landfilled at 100% landfilling rate Wood, paint, plastic, rubber and misc. is assumed to be incinerated with energy recovery at a municipal incineration plant at 90% incineration rate. 						
	Waste not recycled or incinerated is assumed to go to landfill.						

Polluter Pays / Allocation by Classification								
Two allocation rules are applied:								
Two allocation rules are applied:								
1) the raw material necessary for the manufacture is allocated by mass of the declared unit								
2) the energy necessary for the manufacture is allocated in MJ by production of the declared unit								
Potential environmental impacts are calculated with Environmental Footprint 3.0 method as implemented in SimaPro. GWP is also calculated with IPCC 2021.								
Resource use values are calculated from Cumulative Energy Demand V1.11.								
Miljögiraff report 943 LCA								
Viktor Hakkarainen and Marcus Wendin at Miljögiraff AB								
SimaPro 9.3.03								

The product documented within this EPD contains no substances in the REACH Candidate list. Furthermore, the product does not contain any substances from the Norwegian priority list.

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

System Boundary


This is a Cradle to Grave with modules A+B+C+D (see Table 1 for included modules). The system boundary mean that all processes needed for raw material extraction, transport, manufacturing and disposal are included in the study.

For an overview of the included processes see Figure 1.

	Produ stage			tructio ess sta		Use s	Use stage			End of life stage					Resou recove	rce ery stage			
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demo- lition	Transport	Waste processing	Disposal			Reuse-Recovery- Recycling-potential
Module	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4		D	
Modules declared	x	x	x	х	x	x	x	х	x	x	x	x	х	х	х	x		x	
Geography	Euro	Euro	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	1	SE	
Specific data	>90%	, 0				-	-	-	-	-	-	-	-	-	-	-		-	

Table 1, show an overview of the included and accounted life cycle phases.

Figure 1, shows what is included in the different modules.

Content and life cycle information

Fixed frame – EA-FFL consist of 15 raw materials. The weight per FU and part recycled material can be seen in Table 2.

Table 2, Product content for EA-FFL size 1230 mm x 1480 mm show the weight and share recycled (post-consumer) material for the raw material and packaging

Products components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%	
Glass	45,752	9,3%	0%	
Argon	0,079	0%	0%	
Distance list	0,490	0%	0%	
Edge sealing compond	1,109	0%	0%	
Butyl	0,099	0%	0%	
Desiccant	0,422	0%	0%	
Pinewood	12,200	0%	100%	
Wood board	0,000	0%	0%	
Surface treatment for pine	0,627	0%	0%	
Aluminum	2,776	30%	0%	
Powder coating aluminum	0,103	0%	0%	
Metal handle & Miscellaneous steel parts	0,037	45%	0%	
Plastic	0,375	0%	0%	
Rubber EPDM	0,399	0%	0%	
Silikonlist	0,000	0%	0%	
Rubber TPE	0,000	0%	0%	
Glue	0,039	0%	0%	
Sealant	0,065	0%	0%	
Waterproof agent	0,000	0%	0%	
Packaging	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%	
Plastic film (stretch film)	0,050	0%	0%	
Plywood	0,358	0%	100%	
Screw	0,016	0%	0%	
Edge protection (cardboard)	0,190	0%	100%	
Cardboard angle	0,057	0%	100%	
Top cover (plastic film)	0,060	0%	0%	
Pallet (wooden)	2,600	0%	100%	

The product documented within this EPD contains no substances in the REACH Candidate list or from the candidate list of SVHC for Authorisation.

During production, the wood raw material is cut and planed in Etri fönster's premises in Vetlanda. The finished wood details are surface treated with a water-based paint system. As wood raw material, pine used by FSC-labeled and / or PEFC-labeled suppliers such as lamella glues and finger joints, the wood raw material is used. IGF cuts the purchased flat glass and manufactures the insulating glass. The glasses are installed in the product in Etri fönster's manufacturing unit in Vetlanda. Aluminum profiles are delivered by Hydro Extrusion in Vetlanda, they are processed, and powder coated on A-painting in Sävsjö, then transported to Etri fönster's manufacturing unit in Vetlanda for final assembly. To produce 1 m² Fixed frame – EA-FFL, 9,96 kWh of electricity and 4,91 kWh of heat is used. Electricity is certified wind power electricity. 1,7 kWh of the heat comes from own combustion from waste in production, the rest comes from the district heating network in Vetlanda. District heating in Vetlanda comes to 98.7% from renewable sources.

In total, 14 % of waste is generated in production. A large part of the waste is wood. During usage, no indoor emissions arise. The paint used is water based and all the other raw materials do not emit any emissions. Due to the enhanced durability of an aluminum clad window's physical properties, no change of IGU is required during the windows 50-year lifespan (Carlsson, 2009.)

Content and life cycle information

This EPD uses input data from other EPDs, the used EPDs can be viewed below:

Table 3 Overview of utilized EPDs as input data

Material	EPD name	EPD specifications				
Uncoated glass by Pilkington	Flat glass, toughened safety glass and laminated safety glass	Sector-EPD for flat plane glass Manufacturer: Pilkington AB EPD Owner: Bundesverband Flachglas e.V. EPD Author: ift Rosenheim GmbH EPD Platform: ift Rosenheim GmbH Geography: Germany Publication number: M-EPD-FEV-GB-002000 Publication date: 2017-12-18				
Uncoated glass by Guardian	Uncoated flat glass, laminated safety glass and coated flat glass	Manufacturer: Guardian Europé S.a.r.l. EPD Owner: Guardian Europé S.a.r.l. EPD Author: ift Rosenheim GmbH EPD Platform: ift Rosenheim GmbH Geography: Germany Publication number: EPD-GFEV-GB-19.2 Publication date: 2021-06-29				
Distance list	TGI-Spacer M	Manufacturer: Technoform EPD Owner: Technoform EPD Author: Technoform EPD platform: INIES Geography: France Publication number: 7-333:2019 Publication date: 2019-06-15				
Pine by Stora Enso	Industrial Components	Manufacturer: Stora Enso EPD Owner: Stora Enso EPD Author: Stora Enso EPD platform: The International EPD® System Geography: Sweden, Finland, Estonia, Lithuania Publication number: S-P-02154 Publication date: 2020-08-03				
Aluminium	EPD Hydro 4.0 Aluminium Extrusion Ingot	09-01 NEPD-1840-768_Hydro-4.0-Aluminium- Extrusion-Ingot Owner of the Declaration: Hydro Aluminium AS Programme holder: The Norwegian EPD Foundation Publisher: The Norwegian EPD Foundation Declaration number: NEPD-1840-468- EN Issue date: 05.08.2019 Valid to: 05.08.2024				

Environmental Information - Fixed frame – EA-FFL

Potential environmental impact – mandatory indicators according to EN 15804.

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5
Climate change	kg CO2 _{eq}	2,76E+01	5,88E+00	4,05E+00	3,76E+01	1,89E+00	2,94E+00
Climate change - Fossil	kg CO2 _{eq}	4,36E+01	5,88E+00	1,50E+00	5,10E+01	1,89E+00	1,84E-01
Climate change - Biogenic	kg CO2 _{eq}	-1,60E+01	5,01E-03	2,54E+00	-1,35E+01	1,61E-03	2,75E+00
Climate change – Land use and LU change	kg CO2 _{eq}	2,87E-02	2,31E-03	4,95E-03	3,60E-02	7,41E-04	1,52E-05
Ozone depletion	kg CFC11 eq	1,88E-06	1,36E-06	1,27E-07	3,37E-06	4,37E-07	5,75E-09
Acidification	mol H+ eq	2,53E-01	2,39E-02	8,99E-03	2,86E-01	7,66E-03	3,91E-04
Eutrophication, freshwater	kg P _{eq}	5,95E-03	3,79E-04	5,55E-04	6,88E-03	1,22E-04	1,22E-05
Eutrophication, freshwater	kg PO4 _{eq}	1,83E-02	1,16E-03	1,70E-03	2,11E-02	3,73E-04	3,75E-05
Eutrophication, marine	kg N _{eq}	1,64E-02	7,18E-03	2,36E-03	2,60E-02	2,31E-03	1,99E-04
Eutrophication, terrestrial	mol N eq	2,13E-01	7,85E-02	2,50E-02	3,17E-01	2,52E-02	1,87E-03
Photochemical ozone formation	kg NMVOC _{eq}	6,92E-02	2,40E-02	7,51E-03	1,01E-01	7,72E-03	4,74E-04
Resource use, minerals and metals	kg Sb eq	3,25E-04	2,04E-05	6,21E-05	4,08E-04	6,56E-06	1,22E-07
Resource use, fossils	MJ	6,70E+02	8,88E+01	1,81E+01	7,77E+02	2,85E+01	4,78E-01
Water use	m3 depriv.	5,48E+00	2,66E-01	5,07E-01	6,25E+00	8,54E-02	-1,57E-02
Particulate matter	disease inc.	1,52E-06	5,07E-07	2,44E-07	2,27E-06	1,63E-07	5,49E-09
lonising radiation	kBq U-235 _{eq}	1,72E+00	4,57E-01	1,25E-01	2,31E+00	1,47E-01	1,81E-03
Ecotoxicity, freshwater	CTUe	1,24E+03	6,93E+01	5,63E+01	1,37E+03	2,23E+01	9,49E-01
Human toxicity, cancer	CTUh	2,18E+02	5,34E+00	3,56E+00	2,27E+02	1,71E+00	1,82E-02
Human toxicity, non-cancer	CTUh	2,94E+01	1,89E+01	5,78E+00	5,40E+01	6,06E+00	5,59E-01
Land use	Pt	4,53E+02	4,51E+01	4,70E+01	5,45E+02	1,45E+01	3,72E-01

>>

> Environmental Information – Fixed frame – EA-FFL

Potential environmental impact – mandatory indicators according to EN 15804.

Impact category	Unit	B2	C2	C3	C4	D
Climate change	kg CO2eq	2,72E+00	4,43E-01	1,83E-02	1,34E+01	-7,91E+00
Climate change – Fossil	kg CO2eq	3,13E+00	4,42E-01	1,65E-02	2,09E+00	-7,61E+00
Climate change – Biogenic	kg CO2eq	-5,92E-01	3,77E-04	5,86E-04	1,13E+01	-8,25E-02
Climate change – Land use and LU change	kg CO2eq	1,84E-01	1,74E-04	1,23E-03	1,02E-04	-2,01E-01
Ozone depletion	kg CFC11 eq	3,91E-07	1,02E-07	7,61E-10	8,15E-08	-5,98E-07
Acidification	mol H+ eq	2,07E-02	1,79E-03	8,29E-05	2,96E-03	-6,16E-02
Eutrophication, freshwater	kg P eq	1,22E-03	2,85E-05	7,20E-06	1,13E-04	-3,37E-03
Eutrophication, freshwater	kg PO4 eq	3,74E-03	8,74E-05	2,21E-05	3,47E-04	-1,04E-02
Eutrophication, marine	kg N eq	5,89E-03	5,41E-04	2,51E-05	1,37E-03	-1,07E-02
Eutrophication, terrestrial	mol N eq	4,39E-02	5,91E-03	2,31E-04	1,33E-02	-1,23E-01
Photochemical ozone formation	kg NMVOC eq	1,15E-02	1,81E-03	5,27E-05	3,52E-03	-3,21E-02
Resource use, minerals and metals	kg Sb eq	4,64E-05	1,54E-06	3,08E-07	8,36E-07	-2,30E-05
Resource use, fossils	MJ	4,96E+01	6,68E+00	2,37E+00	5,75E+00	-2,45E+02
Water use	m3 depriv.	6,75E+01	2,00E-02	2,93E-02	5,79E-02	-3,60E+00
Particulate matter	disease inc.	2,17E-07	3,82E-08	1,22E-09	4,51E-08	-6,98E-07
lonising radiation	kBq U-235 eq	3,58E-01	3,44E-02	1,70E-01	2,56E-02	-1,25E+01
Ecotoxicity, freshwater	CTUe	1,12E+02	5,22E+00	8,15E-01	9,07E+00	-2,89E+02
Human toxicity, cancer	CTUh	1,39E+01	4,02E-01	2,43E-03	2,88E-01	-2,42E+00
Human toxicity, non-cancer	CTUh	2,44E+01	1,42E+00	1,99E-02	5,14E+00	-7,11E+00
Land use	Pt	7,40E+01	3,40E+00	7,92E-01	3,64E+00	-2,80E+02

Climate impact according to IPCC 2021 GWP

	Unit	A1	A2	А3	A1-A3	A4	A5	B2	C2	C3	C4	D
GHG-GWP	Kg CO2,eq	39,62	5,83	1,49	46,93	1,87	0,18	3,09	0,44	0,02	2,09	-7,66

Use of resources – Fixed frame - EA-FFL

	Unit	A1	A2	A3	A1-A3	A4	A5	B2	C2	СЗ	C4	D
PERE	MJ	1,26E+02	1,25E+00	3,42E+01	1,61E+02	4,02E-01	1,01E-02	1,56E+01	9,42E-02	9,78E-01	1,26E-01	-1,40E+02
PERM	MJ	1,49E+02	0,00E+00	5,68E+01	2,05E+02	0,00E+00						
PERT	MJ	2,74E+02	1,25E+00	9,10E+01	3,67E+02	4,02E-01	1,01E-02	1,56E+01	9,42E-02	9,78E-01	1,26E-01	-1,40E+02
PENRE	MJ	7,93E+01	9,43E+01	1,49E+01	1,89E+02	3,03E+01	5,13E-01	5,34E+01	7,10E+00	2,38E+00	6,14E+00	-2,51E+02
PENRM	MJ	4,00E+01	0,00E+00	4,40E+00	4,44E+01	0,00E+00						
PENRT	MJ	1,19E+02	9,43E+01	1,93E+01	2,33E+02	3,03E+01	5,13E-01	5,34E+01	7,10E+00	2,38E+00	6,14E+00	-2,51E+02
SM	Kg	3,08E+00	0,00E+00	0,00E+00	3,08E+00	0,00E+00						
RSF	MJ	0,00E+00										
NRSF	MJ	0,00E+00										
FW	m³	3,22E-01	1,57E-02	1,62E-02	3,54E-01	5,03E-03	0,00E+00	2,64E+00	1,18E-03	5,85E-04	1,11E-02	-6,52E-02
Abbrevia- tions												

Waste production and output flows - Fixed frame - EA-FFL

Indicator	Unit	A1	A2	A3	A1-A3	A4	A5
Hazardous waste disposed	kg	0	0	0	0	0	0
Non-hazardous waste disposed	kg	0	0	8,74E-01	8,74E-01	0	3,41E+00
Radioactive waste disposed	kg	0	0	0	0	0	0
Reuse	kg	0	0	0	0	0	0
Recycling	kg	0	0	7,30E-02	7,30E-02	0	1,82E-02
Recovery	kg	0	0	5,92E+00	5,92E+00	0	3,38E+00
Exported energy, electricity	MJ	0	0	0	0	0	0
Exported energy, heat	MJ	0	0	0	0	0	0
		(1			-
Indicator	Unit	B2	C2	C3	C4	D	
Hazardous waste disposed	kg	0	0	0	0	0	
Non-hazardous waste disposed	kg	0	0	0	3,83E+01	0	
Radioactive waste disposed	kg	0	0	0	0	0	
Reuse	kg	0	0	0	0	0	
Recycling	kg	0	0	0	1,40E+00	0	
Recovery	kg	0	0	0	8,05E+00	0	
Exported energy, electricity	MJ	0	0	0	0	0	1
Exported energy, heat	MJ	0	0	0	0	0	

Waste production and output flows

Information on biogenic carbon content

Results per functional or declared unit								
BIOGENIC CARBON CONTENT	Unit	QUANTITY						
Biogenic carbon content in product	kg C	3,4						
Biogenic carbon content in packaging	kg C	1,6						

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

Annex C – Voluntary use stage scenario based on energy balance calculation

Use stage environmental impacts illustrates the annual environmental impacts due to the energy balance of the windows, based on Stockholm heating demand average and an energy balance formula based on the described scenario.

	General inform	nation
		Comments
Heating method according to EN 17213 annex C	District heating from natural gas	LCI dataset: Heat, central or small-scale, natural gas {RER} market group for Cut-off, U
Cooling method according to EN 17213 annex C	Electricity powered air cooler	LCI dataset: Electricity, low voltage {SE} market for Cut-off, U
Climate Zone	111	According to Swedish building standards, used climate file: "Stockholm 1981-2010" from the Swedish Meteorological and Hydrological Institute
Annual average temperature	6,8 °C	Stockholm
Min indoor temperature	21 °C	Heating stops at this temperature
Max indoor temperature	27 °C	Cooling stops at this temperature
Cooling Factor	3	kWh cooling delivered per kWh of electricity
Model (Calculation)	Single room	
Orientation	West (270°)	
Calculation method	Hourly	
Modelling program	VIP-Energy 4.3.2	Modeled as a 1 m ² room with concrete flooring and no walls or internal loads
Environmental Impact assessment model	Environmental Footprint 3.0	

Technical specifications					
Туре	Standard glass	Energy glass			
U-value	1,2 w/m², K	0,87 w/m², K			
Gg-value	60%	60%			
Gw-value	48%	48%			
Air leakage class	4	4			
Air leakage flow at +/- 50 Pa	0,2 l/s,m ²	0,2 l/s,m ²			
Daylight factor, LT-value	75%	75%			
Glass/frame ratio	0,79	0,79			
Total heating demand	88 kWh heat/year	60 heat/year			
Total cooling demand	23 kWh electricity/year	23 kWh electricity/year			

> Annex C – Voluntary use stage scenario based on energy balance calculation

The results below are the environmental impacts that are presented in line with instructions from EN 17213 appendix C. It is worth noting that some units are differing from units that are presented in results for the LCA. For comparison, multiply the result below by the following factors:

Acidification: 1.31 to report kg SO2, eq as mol H +, eq Eutrophication: 0.33 to report kg PO4-3, eq. Kg P, eq Photochemical Ozone Creation Potential: 1.69 to report kg C2H4, eq as kg NMVOC, eq

Yearly environmental impacts, standard glass					
Environmental impact category	Unit	Environmental impacts of heating, natural gas	Environmental impacts of cooling, electricity		
Global Warming Potential	kg CO2, _{eq}	24,52	1,63		
Ozone Depletion Potential	kg CFC-11eq	2,57E-06	5,13E-08		
Acidification Potential	kg SO2, _{eq}	2,16E-02	5,62E-03		
Eutrophication Potential	kg PO4-3, _{eq}	2,42E-03	1,88E-03		
Photochemical Ozone Creation Potential	kg C2H4	1,49E-02	2,20E-03		
Abiotic Depletion Potential, minerals & metals	kg Sb, _{eq}	2,98E-05	7,28E-05		
Abiotic Depletion Potential, fuels.	MJ	367,02	144,29		

Yearly environmental impacts, energy glass					
Environmental impact category	Unit	Environmental impacts of heating, natural gas	Environmental impacts of cooling, electricity		
Global Warming Potential	kg CO2,eq	16,72	1,63		
Ozone Depletion Potential	kg CFC-11eq	1,75E-06	5,13E-08		
Acidification Potential	kg SO2, _{eq}	1,47E-02	5,62E-03		
Eutrophication Potential	kg PO4-3, _{eq}	1,65E-03	1,88E-03		
Photochemical Ozone Creation Potential	kg C2H4	1,01E-02	2,20E-03		
Abiotic Depletion Potential, minerals &	kg Sb, _{eq}	2,03E-05	7,28E-05		
metals Abiotic Depletion Potential, fuels.	MJ	250,24	144,29		

General information

Programme information			
Programme:	The International EPD [®] System		
Address:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden		
Website:	www.environdec.com		
E-mail:	info@environdec.com		

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product category rules (PCR): PCR 2019.14 Construction products and construction services. Version 1.11

PCR review was conducted by: PCR Committee: IVL Swedish Environmental Research Institute,

Swedish Environmental Protection Agency, SP Trä, Swedish Wood Preservation Institute, Swedisol,

SCDA, Svenskt Limträ AB, SSAB

Moderator: Martin Erlandsson, IVL Swedish Environmental Research Institute

Independent third-party	verification	of the declarat	tion and data	according to IS	C 14025:2006
macpenaent tinta party	vernication	or the acciara	cioni una auta	, according to 15	5 14025.2000.

EPD process certification

Third party verifier: Martyna Mikusinska, Sweco, Individual verifier approved by the International EPD® System

Procedure for follow-up of data during EPD validity involves third party verifier:

🗌 Yes 🛛 🖾 No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

References

General Programme Instructions of the International EPD® System. Version 3.01.

EN 15804:2012+A2:2019, "Sustainability of construction works - Environmental product declarations -Core rules for the product category of construction products"

EN ISO 14025:2014-02 Environmental labels and declarations -Type III environmental declarations -Principles and procedures, Edited in 2010.

EN ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework, 2006.

EN ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines, 2006.

ILCD International guide for life-cycle data system. General guide for life cycle assessment – Detailed guidance, 2010.

Product Category Rules PCR 2019:14. Construction products and construction services. Version 1.11

PRé Consultants, (PRé Consultants, 2019), http://www.pre-sustainability.com/simapro.

Ecoinvent, 'Ecoinvent' <https://www.ecoinvent.org/database/database.html>.

Marcus Wendin, Miljögiraff AB, LCA Miljögiraff Report 943, 2022-06-08.

Brånäs Mats, Etri Fönster and testing manager, info@sscgroup.se

